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Abstract 

Background Functional biomarkers in neurodevelopmental disorders, such as verbal and ambulatory abilities, are 
essential for clinical care and research activities. Treatment planning, intervention monitoring, and identifying comor-
bid conditions in individuals with intellectual and developmental disabilities (IDDs) rely on standardized assessments 
of these abilities. However, traditional assessments impose a burden on patients and providers, often leading to lon-
gitudinal inconsistencies and inequities due to evolving guidelines and associated time–cost. Therefore, this study 
aimed to develop an automated approach to classify verbal and ambulatory abilities from EHR data of IDD and cer-
ebral palsy (CP) patients. Application of large language models (LLMs) to clinical notes, which are rich in longitudinal 
data, may provide a low-burden pipeline for extracting functional biomarkers efficiently and accurately.

Methods Data from the multi-institutional National Brain Gene Registry (BGR) and a CP clinic cohort were utilized, 
comprising 3,245 notes from 125 individuals and 5,462 clinical notes from 260 individuals, respectively. Employing 
three LLMs—GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4 Omni—we provided the models with a clinical note and utilized 
a detailed conversational format to prompt the models to answer: "Does the individual use any words?" and "Can 
the individual walk without aid?" These responses were evaluated against ground-truth abilities, which were estab-
lished using neurobehavioral assessments collected for each dataset.

Results LLM pipelines demonstrated high accuracy (weighted-F1 scores > .90) in predicting ambulatory ability 
for both cohorts, likely due to the consistent use of Gross Motor Functional Classification System (GMFCS) as a con-
sistent ground-truth standard. However, verbal ability predictions were more accurate in the BGR cohort, likely due 
to higher adherence between the prompt and ground-truth assessment questions. While LLMs can be computation-
ally expensive, analysis of our protocol affirmed the cost effectiveness when applied to select notes from the EHR.

Conclusions LLMs are effective at extracting functional biomarkers from EHR data and broadly generalizable 
across variable note-taking practices and institutions. Individual verbal and ambulatory ability were accurately 
extracted, supporting the method’s ability to streamline workflows by offering automated, efficient data extrac-
tion for patient care and research. Future studies are needed to extend this methodology to additional populations 
and to demonstrate more granular functional data classification.
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Background
Verbal and ambulatory ability are functional and clinically 
meaningful biomarkers of intellectual and developmental 
disabilities (IDDs) that meet the National Institutes of 
Health Biomarkers Definitions Working Group definition 
as characteristics that are “objectively measured and eval-
uated as an indicator of normal biological processes, or 
pharmacological responses to a therapeutic intervention” 
[1]. Treatment planning, intervention monitoring, and 
identification of comorbid conditions in individuals with 
IDDs, as well as research to understand the underlying 
pathology of these conditions, currently relies on assess-
ments of these functional ability biomarkers. However, 
standardized assessments, which may consist of either 
short user-defined surveys or well validated instruments 
or screening tools, are typically burdensome and time-
consuming as they require dedicated effort from provid-
ers, specialists, affected individuals, and their caregivers 
for implementation, completion and storage. Further-
more, IDD phenotypes change over time, but standard 
assessments often provide only a one-time snapshot of 
an individual’s abilities and are challenging to accrue over 
time, limiting longitudinal clinical and research charac-
terization of these phenotypes. In addition, standardized 
assessments may suffer from inconsistencies, including 
missing data, evolving guidelines/protocols, and patient/
caregiver and assessor subjectivity, resulting in a lack of 
reproducibility. On the other hand, the electronic health 
record (EHR) constitutes a rich source of longitudinal 
real-world clinical data accrued obligately during routine 
healthcare encounters, including demographics, diagno-
ses, medications, procedures, laboratory results, vitals, 
and clinical notes, making the EHR a powerful resource 
for predicting health outcomes [2–4]. Hence, we propose 
an automated natural language processing (NLP) based 
pipeline to extract longitudinal functional phenotypes 
from EHR to augment and fill gaps in the information 
collected through formal assessments or surveys.

Verbal and ambulatory abilities are not often docu-
mented in structured tables within the EHR [5], despite 
recommendations by the US Department of Health and 
Human Services to document functional disabilities 
[6–9]. While deficient in structured data pertaining 
to functional ability, the EHR nevertheless possesses 
a wealth of unstructured and non-standardized infor-
mation that may be helpful for identifying and charac-
terizing disabilities. A study from 2011 examining the 
feasibility of manual abstraction of medical records to 
classify gross motor function of children with cerebral 
palsy (CP) records found that 90% of the study cohort 
had gross motor skill descriptions in their medical 
records that were adequate for Gross Motor Function 
Classification System (GMFCS) classification, with 75% 

agreement between two qualified clinician raters, sug-
gesting that even without structured documentation, 
the EHR remains a valuable source of this information 
pertaining to functional ability [10].

Due to the diverse terminology and structures of 
clinical notes, the identification of verbal and ambula-
tory ability within notes is not trivial, and NLP tech-
niques for clinical entity extraction are necessary to 
automatically derive this information from notes [2–4, 
11]. Rule-based natural language processing methods 
have been widely utilized for clinical entity extraction 
because these methods identify exact pre-specified 
phrases found within the text, resulting in highly effec-
tive extraction [11–13]. However, identifying relevant 
phrases can be extremely time consuming, particularly 
when applying the same method across varying note 
authors, types and templates. Recently, Large Language 
Models (LLMs) have emerged as an alternative clinical 
entity extraction technique, with demonstrated suc-
cess at information extraction from clinical texts [14, 
15]. LLMs are pre-trained transformer-based artifi-
cial intelligence (AI) language models that have been 
utilized for a variety of NLP tasks [16, 17], and can be 
used out of the box without fine-tuning or intensive 
manual rule-development. Thus, we hypothesize that 
the identification of functional abilities from the EHR 
can be automated using state-of-the-art artificial intel-
ligence methods, which may reduce patient/caregiver/
provider burden and be an efficient tool to collect clini-
cally important functional biomarkers for trending out-
comes in natural history studies, assessing therapeutic 
responses, and identification of patients with functional 
disabilities who may benefit from targeted management 
strategies.

In this study, we leveraged LLMs to develop an auto-
mated and generalized pipeline to determine verbal and 
ambulatory ability using clinical notes from the EHR. We 
evaluated the performance of our pipeline in two inde-
pendent cohorts: the national Brain Gene Registry (BGR), 
which includes multi-institutional participants with rare 
neurogenetic disorders, and a single institution (St. Louis 
Children’s Hospital Cerebral Palsy Center) cohort of indi-
viduals with CP, many of whom have functional limita-
tions in verbal and motor abilities [18]. By implementing 
this pipeline on EHR data collected across twelve aca-
demic medical centers in the BGR and across two differ-
ent clinical cohorts, we assess both the generalizability 
of the pipeline and its efficacy for predicting clinically 
meaningful functional biomarkers from EHR data. The 
goal of this work is to create a clinical extraction pipeline 
that can be generalized for extracting and analyzing other 
clinical phenotypes in IDDs more broadly.
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Methods
Step 1: Data collection and preprocessing
National Brain Gene Registry (BGR) dataset
Data from the National BGR were obtained with the 
approval of the Washington University Institutional 
Review Board (# 202,010,013). The BGR aggregates clini-
cally informative data from participants with rare genetic 
neurodevelopmental disorders, recruited across twelve 
academic medical centers with the goal of accelerating 
the curation of gene-disease associations [19, 20]. The 
repository includes genotypic and phenotypic data col-
lected from a variety of sources, including patient EHR 
data, a Rapid Neurobehavioral Assessment Protocol 
(RNAP) that is comprised of a gold-standard battery of 
remotely delivered neurobehavioral assessments, span-
ning a variety of domains (including verbal and motor 
function)(Table  1) [20], variant-level genomic data 
obtained from GenomeConnect [21, 22], and additional 
relevant records such as previous neuropsychological 
reports, and photographs. As of May 8, 2024, the national 
BGR contained data from 564 participants recruited 
across 12 Eunice Kennedy Shriver Intellectual and Devel-
opmental Disability Research Centers (IDDRCs) [23].

For this study we extracted data from sources in the 
BGR:

• Clinical Notes from EHR: We focused on progress 
notes, corresponding note metadata (author name, 
encounter date, note type, etc.), and demograph-
ics (DOB, sex, etc.) originating from the electronic 
health record (EHR); and questionaries, surveys and 
other neurobehavioral assessments collected through 
the BGR’s RNAP. The clinical notes obtained from 
the BGR were authored between July 2002 to March 
2024. In sum, 43,482 clinical notes were included in 
the initial data pull from the BGR, which we nar-
rowed down to 19,546 notes after selecting only 
progress notes. We further limited the dataset to 
progress notes most relevant to recent verbal and 
ambulatory status based on these criteria: 1) notes 
authored by providers from 14 specialties determined 
by expert clinicians to be relevant according to note 
type and frequency, 2) notes of individuals who had 
ground-truth labels (i.e. RNAP data), 3) notes written 
when the individual was at least 3 years old, and 4) 
notes of individuals who have at least 5 notes. The 14 

Table 1 Assessments included in the rapid neurobehavioral assessment protocol

Table depicting information relevant to the neurobehavioral assessment measures included in the RNAP, such as the measure name, the domain assessed, how the 
assessment is performed, the age range of individuals the measure can be applied to, and the approximate time taken complete the assessment

Rapid Neurobehavioral Assessment Protocol

Domains Assessed Measure Assessment Type Age Time

Vision, Hearing and Verbal Ability Telehealth Visit Guide Parent Interview all 5–10 min

Cognitive Ability Shipley- 2, Block Patterns Direct Assessment 7–89 yrs 10 min

Developmental Profile- 4, Cognitive Domain Parent Questionnaire 0–21 yrs, 11 mos 5–10 min

Adaptive Functioning Vineland- 3: Comprehensive Parent/Caregiver Form Parent Questionnaire 0–2 yrs, 11 mos 13–19 min

Vineland- 3: Domain-Level Parent/Caregiver Form Parent Questionnaire 3 yrs and older 12–18 min

Motor/Sensory Function Repetitive Behavior Scale-Revised Parent Questionnaire 2 yrs to adult 15 min

Sensory Experiences Questionnaire- 3 Parent Questionnaire 2 yrs—12 yrs 15–20 min

Developmental Coordination Disorder Questionnaire Parent Questionnaire 5 yrs—15 yrs 10–15 min

Gross Motor Functioning Classification System Parent Questionnaire 2 yrs—18 yrs < 5 min

Autistic Features Social Communication Questionnaire-Lifetime Version Parent Questionnaire > 4 yrs < 10 min

Modified Checklist for Autism in Toddlers-Revised Parent Questionnaire 16 mos—30 mos 10 min

Social Responsiveness Scale- 2 Parent Questionnaire 2.5 yrs—19 + yrs 15–20 min

Childhood Autism Rating Scale- 2 Observer (High Function-
ing or Standard)

Direct Assessment all 15–20 min

Psychiatric Symptoms Vanderbilt ADHD Parent Questionnaire 6 yrs—12 yrs 10 min

Achenbach System of Empirically Based Assessment (ASEBA) Parent Questionnaire 1.5 yrs—59 yrs 15–20 min

Abberant Behavior Checklist-Community Parent Questionnaire 5 yrs—adult 10–15 min

Physical Features Dysmorphology Screen Direct Assessment all 10–15 min

Photographs Parent Completed all 10–15 min

Neurological Symptoms Seizure History Parent Questionnaire all 10–15 min

Virtual Neurological Exam Direct Assessment All 10–15 min

Edinburgh Handedness Inventory Parent Questionnaire 4 yrs—adult 5 min
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specialties whose notes were determined by expert 
clinicians to be relevant are listed in Supplementary 
Table 1. After applying these criteria, the final dataset 
consisted of 3,245 notes from 125 individuals.

• Neurobehavioral Assessments: Every participant 
in the BGR had their RNAP data collected between 
February 2021 and May 2024. The RNAP data was 
utilized as ground-truth labels to evaluate the per-
formance of the NLP pipeline developed to extract 
functional phenotypes from EHR clinical notes. 
Table  1 summarizes all assessments included in the 
RNAP.

Cerebral palsy (CP) dataset
Data for the CP cohort were obtained with the approval 
of the Washington University Institutional Review Board 
(# 202,309,003), and two databases from the St Louis 
Children’s Hospital CP Center cohort were utilized:

• Research Database with Standardized Assessments: 
These data included St. Louis Children’s Hospital 
(SLCH) CP Center provider-populated GMFCS, 
Viking Speech Scale (VSS), and Communication 
Function Classification System (CFCS) classifica-
tions, which are well validated batteries for classify-
ing self-initiated motor, speech, and communication 
abilities, respectively [24–29]. Since April 2023, pro-
viders in the St. Louis Children’s Hospital CP Center 
have routinely assessed and documented these on all 
patients, thus generating a high-quality ground-truth 
labels for evaluating our pipeline for extracting and 
mapping verbal and motor function data from EHR 
data to these scales.

• Clinical Notes from the EHR: Clinical notes authored 
between 9/22/2022—8/26/2024 were extracted 
from Washington University School of Medicine’s 
(WUSM’s) Research Data Core, a research repository 
of EHR data originating from the WUSM/Barnes 
Jewish Hospital/St. Louis Children’s Hospital Epic 
EHR system. In total, 134,177 clinical notes were 
included in the initial CP data pull, of which 19,551 
were progress notes. We further reduced the data-
set to only notes relevant to gross motor function 
classification based on these criteria: 1) notes from 
the same 14 specialties as the BGR dataset, 2) notes 
written within 1.5 years of when the ground-truth 
annotations were created for each patient, 3) notes 
containing at least 500 words, 4) notes of individuals 
who have at least 5 remaining notes. This resulted in 
a dataset of 5,462 notes. In the next step, from these 
notes we removed any references of the GMFCS and 
VSS score in order to mitigate bias and ensure that 

our pipeline predicts functional phenotypes without 
using the values from these instruments. Using string 
search, the following phrases and the 15 characters 
before and after were removed to prevent data leak-
age: ‘gmfcs’, ‘gross motor function’, ‘gross motor func-
tion cs’, ‘vss’, ‘viking speech’, and ‘cfcs’. The final data-
set consisted of 5,462 notes from 260 individuals.

Step 2: Targeted functional biomarkers for extraction
We identified two functional biomarkers of interest 
which were the ability to use any number of words via 
motor speech (verbal ability) and ability to walk inde-
pendently without any assistance or walking devices 
(ambulatory ability), for extraction from the clinical 
notes in our datasets. To extract these, we developed two 
questions to inform our prompt to the LLM, “Does the 
individual use any words?” and “Can the individual walk 
without aid?”. An initial prompt was developed to elicit 
an LLM response to these questions when provided a 
clinical note. By testing against a small subset of notes, 
iterative prompt engineering was performed to maximize 
performance. For example, the LLM originally mistak-
enly included those walking with assistance as those able 
to walk, so the clarifying text “someone who walks with a 
walking aid should not be considered ‘able to walk’” was 
added to our prompt. The final prompt was reviewed by 
clinicians and informaticians with NLP experience to 
ensure accuracy. The iteratively achieved final prompt 
consisted of 4 components: (1) a system prompt inform-
ing the model of its role to emulate a medical physician 
with the goal to extract verbal and ambulatory ability 
from a clinical note, (2) definitions of verbal and ambula-
tory ability, (3) an example of the output format, and (4) 
the clinical note text. This full prompt is shown in Fig. 1.

Step 3: Identification of ground‑truth functional biomarker 
status of individuals
Ground‑truth for the Brain Gene Registry (BGR) dataset
The RNAP in the BGR includes questions directly rel-
evant to verbal and ambulatory ability, allowing us to 
establish individual-level ground-truth verbal and 
ambulatory status without manually annotating clini-
cal notes. Relevant surveys and assessments included 
the second edition of the Child Autism Rating Scale 
(CARS- 2) [30], the Gross Motor Function Classifica-
tion System (GMFCS) [31], a telehealth screener, and 
the Modified Checklist for Autism in Toddlers, Revised 
(M-CHAT-R) [32, 33]. We mapped responses from 
these assessments to ground-truth labels for the two 
selected questions “Does the individual use any words?” 
and “Can the individual walk without aid?”, which are 
provided in Table 2. There were no conflicting mapped 
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responses among participants who completed multiple 
assessments that map to a single identified question 
(i.e. CARS- 2 and Telehealth Screener).

Ground‑truth for the Cerebral Palsy (CP) dataset
The ground-truth CP annotations are solely based on 
GMFCS, the Viking Speech Scale (VSS), and the Com-
munication Function Classification System (CFCS). The 
mappings to the identified questions are provided in 
Table 3. The ambulatory status predictions were evalu-
ated once against the GMFCS; however, the verbal sta-
tus predictions were evaluated separately against both 
the VSS and CFCS.

Step 4: Development of NLP/LLM pipeline to identify 
individual functional biomarker status
Three pipelines were built to prompt the Genera-
tive Pre-trained Transformer (GPT) model to classify 
patient verbal and ambulatory status at the note level, 

utilizing GPT- 3.5 Turbo version 0613 (GPT- 3.5), 
GPT- 4 Turbo model version 0125-preview (GPT- 4 t), 
or GPT- 4 Omni (GPT- 4o). Each pipeline employed 
HIPAA-compliant OpenAI endpoints of GPT accessed 
through Washington University’s Azure tenant, allow-
ing clinical notes to be provided to the model without 
prior deidentification. Each clinical progress note was 
provided to the model, which was prompted to utilize 
only the information found in the note to answer: “Does 
the individual use any words?” and “Can the individual 
walk without aid?” Full unmodified progress notes were 
provided to the model when using GPT- 4 t and GPT- 
4o, but the smaller context limit of GPT- 3.5 required 
truncated note versions (10,000 characters) to be pro-
vided when using that model, and the rest of the note 
was discarded. Two separate prompts were developed 
for each pipeline: a multi-class prompt (MCP) that 
allowed GPT to respond with “yes”, “no”, or “unknown” 
to both questions concurrently, and a binary-class 
prompt (BCP) that restricted GPT responses to “yes” or 

Fig. 1 Prompt for large language model analysis. The generative pre-trained transformer (GPT) model was prompted in a conversational format 
in which GPT’s system prompt is first asserted. The system prompt steers the behavior of the model, allowing for it to be more adaptable to the task. 
The user (researcher) then asks if GPT understands its role, to which GPT confirms. Finally, the user provides detailed walking and using words 
definitions and extraction instructions with the desired output format. The clinical note is then included in the prompt at the placeholder symbol “{}”
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“no”. To develop these prompts, we selected a subset of 
10 notes from the BGR representing unique specialties 
and applied a baseline prompt to these notes. Then we 
iteratively refined the prompts to ensure that note-level 
extraction matched the note content, resulting in the 
final prompts that we used. For each version of GPT, 
the verbal and ambulatory ability were extracted for 
three unique experiments consisting of different com-
binations of prompts and note sets, testing the effects 
of allowing GPT to respond with ‘unknown’ and eval-
uating whether notes written more closely in time to 
the creation of the ground-truth labels contain more 

relevant information. The three unique experiments are 
below:

1) MCP-All: Prompt GPT to perform multi-class 
extraction (“yes”, “no”, and “unknown”) on the entire 
set of identified clinical notes.

2) BCP-All: Prompt GPT to perform binary-class 
extraction (“yes” or “no”) on the entire set of identi-
fied clinical notes.

3) MCP- 1.5Y: Prompt GPT to perform multi-class 
extraction on only the clinical notes written within 
1.5 years of the date the patient was enrolled in the 
respective registries.

Table 2 RNAP assessment responses mapped to identified questions

This table lists the RNAP assessments utilized to determine the patients’ ground-truth verbal and ambulatory abilities. Columns include the name of the assessment, 
the specific verbal or ambulatory ability question that is addressed, the pertinent question from the assessment, the recorded response to the assessment question, 
and the mapped ground-truth patient verbal or ambulatory ability

Assessment Identified Question Assessment Question Response Mapped 
Response

CARS- 2 Does the individual use any words? Is the person you are rating using words? Yes Yes

No No

Telehealth Screener Does [participant’s name] use single words? Yes Yes

No No

GMFCS Can the individual walk without aid? Motor function is classified on a 1–5 scale accord-
ing to different criteria for different ages

Class: 1
Age: 3 to 4

Yes

Class: 2,3,4,5
Age: 3 to 4

No

Class: 1,2
Age: 4 to 18

Yes

Class: 3,4,5
Age: 4 to18

No

M-CHAT-R Does your child walk? Yes Yes

No No

Table 3 Cerebral palsy assessment responses mapped to identified questions

This table lists the assessments utilized to determine the patients’ ground-truth verbal and ambulatory abilities for the Cerebral Palsy cohort. Columns include the 
name of the assessment, the specific verbal or ambulatory ability question that is addressed, the pertinent question from the assessment, the recorded response to 
the assessment question, and the mapped ground-truth patient verbal or ambulatory ability

Assessment Identified Question Assessment Question Response Mapped 
Response

VSS Does the individual use any words? Motor impact on speech is classified on a 1–4 scale Class: 1, 2, 3 Yes

Class: 4 No

CFCS Communication ability with familiar and unfamiliar 
people at levels 1 through 5

Class: 1, 2, 3, 4 Yes

Class: 5 No

GMFCS Can the individual walk without aid? Motor function is classified at levels 1 through 5 using 
different criteria for different ages

Class: 1 Yes

Class: 2,3,4,5
Age: 3 to 4

No

Class: 1,2
Age: 4 to 18

Yes

Class: 3,4,5
Age: 4 to18

No
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Each of these experiments were evaluated on the BGR 
cohort data, but only the MCP- 1.5Y prompt and note 
set was evaluated on the CP cohort data. Binary class 
prediction was excluded from the CP cohort analysis 
because we found the multi-class prediction prompts led 
to better or matching performance in the BGR data, as 
seen in Table 5. Prediction on the entire CP cohort was 
not performed due to the larger note counts within the 
CP cohort compared to the BGR cohort, as well as cost 
constraints associated with a larger note cohort (see Cost 
Analysis).

Predict functional biomarker status per individual
For the BGR and CP datasets, we mapped the note-
level predictions to a single individual-level prediction 
because the ground-truth labels were known for each 
individual. For each question and individual in the BGR, 
the mapped response was “yes” if the number of notes 
with a “yes” prediction was greater than the number of 
notes with a “no” prediction, and the mapped response 
was “no” otherwise. The content and contextual pat-
terns of notes from the CP cohort differed from the BGR 
dataset, which necessitated a different methodology for 
mapping note-level ambulatory predictions to individual-
level predictions. This was because many individuals in 
the CP cohort had weekly physical therapy notes with 
identical note history sections, which cause an influx 
of “no” ambulatory predictions for these individuals. 
Therefore, for individuals in the CP cohort, the mapped 
ambulatory prediction response was “yes” if there was at 

least one note with a “yes” prediction, and the mapped 
response was “no” otherwise. For verbal predictions, the 
same mapping methodology as BGR was used.

Step 5: Evaluation of pipeline
The above analyses were performed on both the BGR and 
CP datasets except, as indicated earlier, only the MCP- 
1.5Y experiment was performed for the CP dataset. The 
final functional biomarker status prediction for each indi-
vidual in the BGR and CP datasets was evaluated against 
the RNAP-informed ground-truth labels or the CP 
Center-curated ground-truth labels, respectively, using 
metrics including average precision, average recall, 
weighted-average F1 score, and macro-averaged F1 
scores. The weighted-average F1 score is calculated as 
(F1− Score"Yes"Class) ∗ "Yes" Annotations

Total Annotations
+ (F1 Score − "No"Class) ∗ ( "No"Annotations

Total Annotations
) , 

and was chosen to give more weight to classes with more 
data points, which we felt represented model perfor-
mance accurately given the imbalance within the BGR 
dataset between ‘yes’ and ‘no’ annotations. This weighted 
score is calculated as Fig.  2 summarizes the NLP/LLM 
pipelines and evaluations applied to the clinical notes 
from the BGR and CP cohorts.

Cost analysis
Utilizing OpenAI’s GPT endpoint is a significant expense, 
as there is a per token cost associated with providing the 
note and prompt to GPT, as well as a per token cost to 
GPT’s output [34]. In the interest of transparency for 

Fig. 2 Illustration of GPT project workflow for both cohorts. The pipelines in the photo are repeated for all versions of GPT utilized: GPT- 3.5, GPT- 4 t, 
and GPT- 4o
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those who may want to use GPT for similar tasks, we 
provide our anticipated and actual costs of Azure ser-
vices associated with the project in Table 7. To calculate 
our expected costs, we first found the average number 
of characters in our prompt (which includes the pro-
vided clinical notes) and in GPT’s expected output. Next, 
we calculated the average token size of our inputs and 
outputs using OpenAI’s estimation of 4 characters per 
token, which we used to calculate the cost of each API 
call. Finally, we multiplied by the total number of notes 
to get the cost of generating a single round of predictions. 
For the BGR cohort there were two total rounds of pre-
dictions per GPT version and dataset, consisting of the 
MCP-All and BCP-All experiments. A separate analysis 
was not needed for MCP- 1.5Y, as the results from the 
multi-class predictions on all notes could be restricted 
to only notes within 1.5 years of enrollment. For the CP 
cohort, only one round of predictions was needed since a 
binary-class prediction experiment was not utilized.

The steps described above are represented in the 
expected total cost equation that we used below, which is 
the total cost for each model (GPT- 3.5, 4 or 4o) for the 
specific cohort. The results of the cost analysis are found 
in Table 6 in the results.

For the verbal and ambulatory status classification 
of notes from the BGR, the N was 3245, the P was 2 
(MCP-All and BCP-All), and the TpO was 13. For the 

Total Cost = P ·

[

N ·

(

{Avg Input Chars}
4

·
{Input Cost}

1000
+

{Output Cost}
1000

· TpO
)]

N = # of Notes
∣

∣4 = Chars per Token
∣

∣ 1000 = Convert to Cost per single token

TpO = Expected Tokens Per Output
∣

∣P = # Prompts Used Per Model/Note
∣

∣

classification of notes from the CP cohort the N was 
5,462, the P was 1 (MCP- 1.5Y), and the TpO was 13.

Results
Demographics
As shown in Table 4, the BGR cohort included 564 indi-
viduals, of which subsets of 104 and 105 met the inclu-
sion criteria based on identified clinical progress notes 
and ground-truth RNAP information for patient ambu-
latory and verbal status, respectively. These subsets 
encompassed 125 unique individuals whose notes were 
provided to GPT. These individuals had an average age of 
11.2 years, were a majority male (67.2%), and had a race 
breakdown of 4% Asian, 6.4% Black or African American, 
73.6% White, 2.4% more than one race, and 13.6% other/
unknown/not reported. Overall, the final dataset of indi-
viduals with ground-truth labels consisted of a greater 
percentage of individuals who are white or male than 
the broader BGR dataset, which is 54.1% male and 67.6% 
White. Supplementary Table 2 provides a more detailed 
breakdown of the BGR cohort demographics, compared 
according to the ground-truth labels.

The CP cohort consisted of 633 individuals, all of 
whom had clinical notes and ground-truth GMFCS, VSS, 
and CFCS scale annotations mapped to binary output 
(Table 5). After the note inclusion criteria were applied, 
the cohort consisted of 260 individuals, with 125 able 
and 135 unable to walk without aid, as shown in Supple-
mentary Table 3, which provides a more detailed demo-
graphic breakdown. These individuals had an average age 
of 7.5 years, were 51.9% male, and had a race breakdown 

Table 4 Demographics of BGR and CP cohorts

Demographics are provided for entire cohorts and just the subsection that the pipelines were applied to. Data include self-reported sex, ethnicity, race, and age

BGR: All Individuals in 
Cohort

BGR: Individuals in GPT 
Dataset

CP: All Individuals in 
Cohort

CP: Individuals 
in GPT Dataset

N 564 125 633 260

Age (sd) 11.4 (9.8) 11.2 (6.1) 8.5 (5.1) 7.53 (4.9)

Sex Female 259 (45.9%) 41 (32.8%) 292 (46.1%) 124 (47.7%)

Male 305 (54.1%) 84 (67.2%) 337 (53.2%) 135 (51.9%)

Unknown/Not Reported 0 (0.0%) 0 (0.00%) 4 (0.6%) 1 (0.4%)

Ethnicity Hispanic or Latine 56 (9.9%) 8 (6.4%) N/A N/A

Not Hispanic or Latine 406 (72.0%) 94 (75.2%) N/A N/A

Unknown/Not Reported 102 (18.1%) 23 (18.4%) N/A N/A

Race Asian 25 (4.4%) 5 (4.0%) 12 (1.9%) 7 (2.7%)

Black or African American 27 (4.8%) 8 (6.4%) 113 (17.9%) 62 (23.9%)

More Than One Race 23 (4.1%) 3 (2.4%) 31 (4.9%) 20 (7.7%)

Other 19 (3.4%) 1 (0.8%) 12 (1.9%) 5 (1.9%)

Unknown/Not Reported 88 (15.6%) 16 (12.8%) 24 (3.8%) 10 (3.9%)

White 381 (67.6%) 92 (73.6%) 492 (77.7%) 192 (73.9%)
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of 2.7% Asian, 23.9% Black or African American, 73.9% 
White, 7.7% Mixed race, and 5.8% other/unknown.

GPT classification performance on BGR dataset
GPT was prompted to answer the questions ‘Can the 
individual walk without aid?’ and ‘Does the individual use 
any words?’ for all clinical notes in the three note/prompt 
sets, which included the multi-class classification prompt 
for all identified notes (MCP-All) and the multi-class 
classification prompt for notes written within 1.5 years 
of enrollment in the BGR (MCP- 1.5Y). These note level 
responses were mapped to individual-level predictions, 
which were then compared to the ground-truth labels as 
determined by the RNAP. Model performances are dis-
played in Table  5, representing ambulatory status and 
verbal ability classification respectively. The GPT model 
with the highest F1 scores for each experiment is high-
lighted in each table. The performances with macro-aver-
aged F1 scores are available in Supplementary Table 4.

GPT models were successfully able to complete both 
tasks, with a maximum weighted F1 score of 0.95 being 
achieved for classifying ambulatory status, and a maxi-
mum score of 0.92 for identifying verbal ability. The high-
est performing GPT model was question dependent, with 
GPT- 4 t outperforming GPT- 4o at classifying ambula-
tory ability, whereas GPT- 4o generally outperformed 
GPT- 4 t at identifying ambulatory status. GPT- 3.5 was 
worst performing model for both tasks and across all 
experimental combinations, achieving a maximum per-
formance of 0.78 for ambulatory classification and a 
higher maximum performance of 0.88 for verbal ability 
classification. Finally, we highlight that performance was 
slightly increased when the entire set of identified clinical 
notes was provided to models, as opposed to only notes 
written within one and a half years of BGR enrollment; 
however, this increase was not found to be significant uti-
lizing the Wilcoxon signed-rank test.

GPT classification performance on CP dataset
GPT was applied to the CP dataset and prompted to 
answer the questions ‘Can the individual walk without 
aid?’ (MCP- 1.5Y, GMFCS) and ‘Does the individual use 
any words?’ (MCP- 1.5Y, VSS) and (MCP- 1.5Y, CFCS) 
for notes written within 1.5 years of ground truth gen-
eration. The performance of GPT at determining verbal 
ability in this dataset was evaluated twice, first using the 
VSS as ground-truth labels, and second using CFCS. 
Model performances are displayed in Table 6, represent-
ing both verbal and ambulatory status. The results with 
macro-averaged F1 scores are available in Supplementary 
Table 5.

GPT models achieved a maximum weighted F1 of 
0.90 for classifying ambulatory status, and a maximum 

weighted F1 score of 0.68 for classifying verbal status. 
GPT- 4o was the highest performing model, outperform-
ing both GPT- 4 t and GPT- 3.5. GPT- 3.5 had the lowest 
performance with maximum weighted F1 scores of 0.69 
and 0.52 for ambulatory and verbal status respectively.

BGR vs CP GPT performance comparison
For ambulatory function prediction, performance on 
the 1.5Y note cohort between the BGR and CP cohorts 
was comparable. All GPT models for the CP cohort had 
higher recall, sensitivity, and macro averaged F1 scores, 
while the BGR cohort had higher weighted F1 scores. The 
CP models having higher macro averaged F1 and lower 
weighted F1 scores indicates that CP models had bet-
ter general performance for both positive and negative 
ambulatory classes while the BGR models had better per-
formance on the majority positive ambulatory class. This 
showcases the high degree of prompt generalizability for 
predicting ambulatory status.

However, for verbal status prediction, GPT perfor-
mances on the CP cohort fell short of its performance 
on the BGR cohort performances. Across the three 
GPT models, for both VSS and CFCS labels, the verbal 
weighted F1 scores on the BGR cohort ranged from 0.17 
to 0.31 greater than the weighted F1 scores on the CP 
cohort.

Extraction performance across note types
To evaluate the most informative notes for the prediction 
of each functional biomarker, we compared the note-
level GPT predictions for each note type to the individual 
ground-truth values. Figure 3 displays this analysis for the 
BGR cohort, demonstrating the correctness of each note 
type at extracting verbal and ambulatory status, and the 
proportion of the time that GPT predicts ‘unknown’. We 
found that for verbal status prediction, the speech ther-
apy and speech notes output non-unknown (‘yes’ or ‘no) 
predictions at the highest prevalence, suggesting they are 
most informative for this extraction. For the ambulatory 
status extraction, the physical therapy notes led to non-
unknown predictions at the highest prevalence. There 
was no obvious general relationship between the propor-
tion of non-unknown predictions by note-type, and the 
correctness of these non-unknown predictions.

Similar findings are found in the CP cohort (Fig.  4). 
In this cohort, the note types leading to the lowest por-
tion of unknown predictions for verbal ability extrac-
tion were psychology and speech therapy notes. As 
observed in the BGR cohort, the physical therapy notes 
were the most informative note type for ambulatory 
ability extraction. Though there was no relationship 
between proportion of non-unknown predictions and 
the correctness of predictions, the correctness of the 
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predictions varied widely. For example, the verbal sta-
tus predictions originating from the psychology notes 
were over 90% correct, whereas the non-unknown pre-
dictions from speech therapy notes were worse than 
random guessing.

For each note type, this figure displays the proportion 
of correct note-level predictions of the BGR cohort notes 

in which there was a non-unknown (i.e. “yes” or “no”) 
prediction. The full bar length shows the proportion of 
that note type that had non-unknown predictions. The 
dark grey bars represent the incorrect note-level predic-
tions with light grey bars representing the correct note-
level predictions. The note level GPT prediction was 
considered correct if the prediction matched the label for 

Fig. 3 Proportion and correctness of non-unknown GPT note-level BGR predictions

Fig. 4 Proportion and correctness of non-unknown GPT note-level CP predictions
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the corresponding individual. This figure was generated 
using the MCP- 1.5Y (notes within 1.5 years enrollment 
and multi-class classification) experiment and GPT- 4o. 
Out of the 14 relevant note types identified, only note 
types with a sample size of at least 50 notes of that type in 
our dataset are displayed in this figure.

For each note type, this figure displays the proportion 
of correct note-level predictions of the CP cohort notes 
in which there was a non-unknown (i.e. “yes” or “no”) 
prediction. The full bar length shows the proportion of 
that note type that had non-unknown predictions. The 
dark grey bars represent the incorrect note-level predic-
tions with light grey bars representing the correct note-
level predictions. The note level GPT prediction was 
considered correct if the prediction matched the label for 
the corresponding individual. This figure was generated 
using the MCP- 1.5Y (notes within 1.5 years enrollment 
and multi-class classification) experiment and GPT- 4o. 
Only note types with a sample size of at least 50 predic-
tions are included in this figure.

Cost analysis
We performed a cost estimate for each model and dataset 
combination using the equation described in the meth-
ods, showing that GPT- 4 t was expected to be the most 
expensive analysis, followed by GPT- 4o, and then GPT- 
3.5 (Table 7).

We calculated that the total cost of performing the 
extraction across all prompts was $252.63 for the BGR 
dataset and $208.10 for the CP cohort, leading to a 
total cost of $460.73. This cost encompassed utilization 
of 3 different GPT versions on two different datasets of 
> 3,000 clinical notes, demonstrating that clinical infor-
mation extraction can be accurately performed for mul-
tiple iterations on thousands of notes at reasonable price 
point. However, recall that only a pre-specified subset of 

the participants EHR deemed most relevant to the topic 
area was used for this analysis.

Discussion
Longitudinal assessment of functional ability is highly 
relevant to disease diagnosis and management, but the 
administration of standardized assessments can pose a 
substantial burden on patients, caregivers, and provid-
ers. For example, many of the reference standard meas-
urements, such as the ADOS or Bayley, take too long to 
be administered in the clinic, and could potentially be 
shortened or replaced by LLM models applied to clini-
cally acquired data. In this study, we created an AI pipe-
line to predict functional biomarkers, specifically verbal 
and ambulatory ability, and tested its performance in two 
independent cohorts, one comprising individuals with 
genetic causes of IDD (the BGR), and the other compris-
ing individuals with CP. Our results demonstrate that an 
automated approach for predicting communication and 
ambulatory abilities from passively accrued EHR data, 
which is acquired during routine clinical care documen-
tation, may provide a solution for extracting functional 
biomarkers for use in research studies and diverse clinical 
applications. For example, knowledge of the functional 
status of a patient is essential for tracking disease pro-
cesses in single patients and groups of patients, as well 
as their response to therapy over time. Potential research 
uses for a rigorously evaluated and highly developed 
functional biomarker extraction pipeline include natu-
ral history studies for clinical trial readiness, particularly 
for rare diseases where patients may not all receive care 
at the same institution. Automated data extraction for 
functional outcomes may also yield particular benefits in 
resource-limited environments due to the passive nature 
of data collections.

When implementing our analysis pipeline on the BGR 
and CP cohorts, we used consistent criteria for note 

Table 7 GPT cost analysis

Calculated costs of all GPT extractions performed on both the BGR and CP datasets, broken down by GPT version

Dataset GPT Version Average Note + Prompt 
Length (Chars)

Input Cost (Per 1,000 
Tokens)

Output Cost (Per 1,000 
Tokens)

Expected 
Total Cost

BGR GPT- 3.5 8583 $.0005 $.0015 $7.09

GPT- 4 t 9933 $.01 $.03 $163.69

GPT- 4o 9933 $.005 $.015 $81.85

Calculated Total Cost of GPT- 3.5, GPT- 4 t, and GPT- 4o $252.63

CP GPT- 3.5 9676 $.0005 $.0015 $6.71

GPT- 4 t 9676 $.01 $.03 $134.26

GPT- 4o 9676 $.005 $.015 $67.13

Calculated Total Cost of GPT- 3.5, GPT- 4 t, and GPT- 4o $208.10

Calculated Total Cost of All Analyses on Both Datasets $460.73
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selection and analysis, such as including only notes of 
a sufficient length from specific author specialties, and 
excluding individuals with too few notes. We also pro-
vided the LLMs with the same prompts to elicit predic-
tions on whether the individuals could “walk without 
aid” and “use words”. We found that for both cohorts 
the LLMs were highly successful at predicting the abil-
ity to “walk without aid”, but were more successful at 
predicting the ability to “use words” for the BGR cohort 
than the CP cohort. The consistent performance on the 
ambulatory ability prediction task across both cohorts 
is likely attributed to low ambiguity in the terminology 
used to describe ambulatory ability. Additionally, both 
cohorts utilize the GMFCS as a major component of the 
ground truth values, limiting divergence between prompt 
extracted ambulatory ability and our ground truth labels. 
Contrasting this, ground truth assessments of communi-
cation were different in the BGR and CP cohorts which 
made it difficult to use a single prompt to assess com-
munication, leading to the varying performances across 
cohorts. The verbal ability prompt assessing use of words 
is more closely aligned to the ground truth communi-
cation assessment for the BGR cohort, as the CARS- 2 
explicitly asks if the individual is using words (“Is the 
person you are rating using words?” and the telehealth-
screener addresses the amount of words an individual 
uses (single words, sentences, etc.), which are both eas-
ily aligned to our question “does the individual use any 
words?” Contrasting this, the communication assessment 
in the CP cohort uses the VSS or CFCS. Of note, the VSS 
assesses the degree to which motor impairment affects an 
individual’s ability to produce oral speech and the CFCS 
describes an individual’s ability to both given and receive 
information to familiar and unfamiliar individuals. In this 
context, the ability to “use words” could be interpreted in 
multiple different ways including the ability to produce 
single words using oral motor speech or using a com-
munication device or using signs. Future assessments of 
communication will likely require much more nuanced 
definitions of verbal ability that are customized to match 
the ground-truth assessments available for each clinical 
cohort.

Taken together, our results indicate that the LLM 
pipeline we developed is broadly generalizable, but that 
cohort-specific changes such as note inclusion criteria 
to maximize information content and minimize noise, 
and prompt engineering for clinical-relevance, may 
require performance optimization. Additionally, extrac-
tion methodology may need to be modified to account 
for cohort differences. For example, the CP cohort note 
template included identical note history sections for 
some patients receiving weekly physical therapy, which 
biased toward “no” responses to the ambulatory ability 

extraction question. This necessitated modifying the 
guidelines for mapping from note-level predictions to 
individual level predictions of ambulatory ability. Despite 
the need for considerations relating to cohort-specific 
changes, success of our LLM pipelines at extracting ver-
bal and ambulatory ability from BGR clinical notes indi-
cates that LLMs have the potential to build generalizable 
clinical extraction pipelines across multiple institutions 
with variable note-taking practices, and may therefore be 
hugely valuable for rare disease research.

In our LLM pipeline we mapped from predictions 
across various time points to a single individual-level 
prediction, which we recognized could be influenced 
by changes in patient functional abilities over time. To 
reduce the potential for this bias, we only included notes 
written when the individual was at least 3 years old (cap-
turing individuals who have passed certain develop-
mental stages), and we performed an analysis on notes 
written within 1.5 years of ground truth ascertainment 
across both cohorts. Despite these steps, we acknowledge 
that we may not have been able to control for all effects of 
individual development and/or improvement in ambula-
tory and verbal abilities.

One limitation of our study is the rapid evolution of 
LLMs. The LLMs we used were deployed behind the 
HIPAA-compliant firewalls of Washington University’s 
Azure tenant. While OpenAI does not commonly release 
training and detailed model information, GPT- 3.5 was 
released in November 2022 and is presumed to be the 
smallest in total parameter size and count of tokens in 
the training data compared to subsequent models. In 
March 2023, GPT- 4 was released and lauded for its nota-
ble increase in capability over GPT- 3.5. This first model 
released in the 4-series showed an ability to handle com-
plex tasks and instructions with much improved perfor-
mance [35–37]. Later, in November 2023, GPT- 4 T was 
released, and GPT- 4o was released in May 2024. Train-
ing of GPT- 4 T and GPT- 4o became more advanced and 
resulted in more capable models, both showing similar 
state of the art performances on several LLM text genera-
tion benchmarks, better than GPT- 4 [38].

We also note that incomplete representation for demo-
graphic groups may introduce unintentional bias to the 
pipelines and prompts, and impact the generalizability of 
the model to diverse populations. Although we included 
cohorts with representation across all demographic 
groups, the BGR included fewer individuals identifying 
as Black or African American (6.4%), Hispanic or Latine 
(6.4%), and as having mixed ancestry (2.4%) compared to 
the U.S. census population [39]. The CP cohort had bet-
ter representation of female and Black or African Ameri-
can individuals, but the proportion of Hispanic or Latine 
identifying individuals was not recorded. If the pipelines 
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in this study are to be utilized for clinical decision mak-
ing, then additional investigation may be needed to 
ensure that there is no bias in the performance against 
underrepresented groups.

Cost analysis showed that the resources required to 
use GPT for automated biomarker identification are 
reasonable, albeit dependent on the chosen model and 
selective inclusion of notes. The cost of all LLM-based 
experiments is larger than that of alternative rule-based 
and machine learning methods, which may have little or 
no monetary cost; however, these other methods have 
a much higher time–cost associated. Future work will 
further examine the scalability of this work by explor-
ing other open-source LLMs such as Llama, Mixtral, and 
FLAN that can be implemented with existing local com-
putational resources, thus avoiding per-token costs as 
well as circumventing data privacy concerns.

A final limitation of our study was the potential bias 
of our two study cohorts, which were derived from 
academic institutions with likely higher incidences 
of functional deficits. Therefore, they may have more 
informative notes compared to IDD patients who have 
not had the same level of access to healthcare. Future 
plans include application of our pipeline to other popu-
lations, such as a general pediatric population (e.g. from 
primary care pediatricians), to determine if clinical notes 
from non-specialist care are sufficiently informative to 
predict functional ability. We also plan to determine 
if the model can predict complex information, such as 
the age at which individuals showed progress or decline 
in verbal and ambulatory ability, and more detailed and 
granular information such as the individual GMFCS lev-
els rather than binary predictions. Application of these 
techniques show promise for informing the need for 
standardized data collection for natural history studies, 
as well as which assessments may best capture clinically 
meaningful change for clinical trials.

Conclusions
In summary, here we demonstrate the successful design 
and application of LLM tools for extracting functional 
biomarker data from extant EHR data to make clinically 
meaningful predictions of verbal and ambulatory abil-
ity. We show that the questions ‘Can the individual walk 
without aid?’ and ‘Does the individual use any words?’ 
can be answered with good, though not perfect, fidelity 
from EHR data in two separate cohorts of patients with 
IDD or CP. We found that GPT- 4 t and GPT- 4o were 
superior to GPT- 3.5, with minor differences in perfor-
mance between GPT- 4 t and GPT- 4o, and all can be 
accomplished at reasonable cost, which may be fur-
ther reduced by translating these methods to open-
source LLMs. The low-cost ability to extract functional 

biomarkers with LLM tools has extensive clinical and 
research applications, including generation of geno-
type–phenotype correlations, assessment of therapeutic 
interventions or harmful exposures, and identification 
of at-risk patients who may benefit from targeted treat-
ments or therapies. Further development and optimiza-
tion of LLM tools for extracting functional biomarkers 
offers an exciting opportunity to utilize the wealth of 
EHR data to efficiently advance research and clinical care 
for patients with IDDs as well as the population-at-large.
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