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Abstract 

Background Adults with Down syndrome (DS) have a 90% lifetime risk for Alzheimer’s disease (AD), with neuro‑
biological pathology present decades prior to dementia onset. The profile and timing of cognitive decline in DS 
is well‑documented. However, there is a small body of research on whether Behavioral and Psychological Symptoms 
of Dementia (BPSD) occur early on in the progression of AD in DS and are associated with early AD pathology (i.e., 
amyloid‑beta [Aβ] and neurofibrillary tau tangles [NFT]).

Methods Data were analyzed from 337 adults with DS (M = 45.13 years, SD = 9.53 years) enrolled in a large cohort 
study. The Reiss Screen for Maladaptive Behavior (RSMB) measured common behaviors reported in BPSD across up to 
four study cycles (spaced approximately 16 months apart). Linear mixed models estimated change in BPSD as pre‑
dicted by baseline (a) dementia status (i.e., cognitively stable, mild cognitive impairment [MCI], or dementia), (b) Aβ 
positron emission tomography (PET) tracer  [11C] PiB, and (c) NFT PET tracer  [18F]AV‑1451. Models controlled for chron‑
ological age, sex, study site, premorbid intellectual disability level, APOE e4 allele carrier status, psychiatric diagnoses, 
and psychiatric medication use.

Results Compared to cognitively stable participants, participants whose status was MCI or dementia, had signifi‑
cantly higher baseline RSMB subdomain scores. Increases in RSMB Depression‑Behavioral, Depression‑Physical, 
and Psychosis were observed for participants with MCI. Higher baseline Aβ and NFT were associated with higher 
RSMB Avoidant at baseline, and increases in RSMB Depression‑Physical and Psychosis over time.

Conclusions BPSD are an important part of AD in DS, particularly during the prodromal stage. Elevated Aβ and NFT 
predict higher initial avoidance and change in physical depression behaviors and may indicate MCI in adults with DS. 
Broader increases in BPSD are observed as adults with DS progress from early to late‑stage dementia. Clinicians should 
rule out other possible causes of BPSD when screening for AD, such as stressful life experiences or co‑occurring medi‑
cal conditions. Caregivers of adults with DS should have resources on BPSD management and self‑care strategies.
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Individuals with Down syndrome (DS) have a high risk 
for Alzheimer’s disease (AD) due to the triplication of 
chromosome 21, which carries the amyloid precursor 
protein gene (APP) [1–4]. This results in the overexpres-
sion of beta-amyloid (Aβ) that accumulates into extracel-
lular plaques in the brain, which is a hallmark character-
istic of AD [1–3]. The development of Aβ plaques in the 
DS population typically begins in the mid to late 30s [1, 
2], and in some cases earlier [5], which is much younger 
than in sporadic late onset AD (LOAD) [6] and similar 
to autosomal dominant AD (ADAD) [7]. Consistent with 
the National Institute on Aging and Alzheimer’s Asso-
ciation (NIA-AA) research framework [8], the accumu-
lation of Aβ plaques followed by neurofibrillary tau tan-
gles (NFT) and then biomarkers of neurodegeneration 
in DS [9]. On average, individuals with DS evidence AD 
dementia in their mid-50s [10, 11] with impairments in 
memory, attention, and visuospatial skills among the ear-
liest affected cognitive domains [12–14], and the onset 
of clinical dementia occurring following NFT deposition 
and neurodegeneration [15, 16].

In both LOAD and ADAD, AD clinical expression 
includes Behavioral and Psychological Symptoms of 
Dementia (BPSD) such as sadness, anxiousness, para-
noia, and agitation [17–19]. Often these symptoms 
emerge after a dementia diagnosis [20–22]. However, 
other studies report that depressive symptoms includ-
ing apathy occur prior to onset of dementia, during what 
has been described as part of mild behavioral impairment 
(MBI) [23, 24]. The MBI is an analogue to mild cogni-
tive impairment (MCI), which describes early and subtle 
cognitive declines that precede dementia [25]. Indeed, 
in general population studies, increases in the frequency 
of some BPSD (e.g., agitation, social withdrawal, and 
sadness or apathetic mood) begin years before an AD 
dementia diagnosis [26, 27] and are associated with ele-
vated Aβ plaques and NFT [28, 29]. Other BPSD changes 
are reported at later stages of AD progression including 
anxiety, aggression, avoidant behaviors, and disruptive 
behaviors [30, 31].

Across the life course, people with DS exhibit more 
behavioral and psychological symptoms than their 
neurotypical peers in the general population [32–35]. 
Increases in or new behavioral problems and psychologi-
cal symptoms, indicative of BPSD, have been reported to 
be part of the early stages of AD in DS [36–38]. Indeed, 
in particular, BPSD involving anxious behavior, apathy, 
social withdrawal or other depressive symptoms (e.g., low 
or sad mood, appetite disturbance, psychomotor slow-
ing) has been reported by caregivers—as being among 
the first signs of possible dementia in DS [37, 39], poten-
tially occurring before memory loss [36, 40]. In other 
studies with people with DS, apathy and other depressive 

symptoms were reported at the time of AD demen-
tia onset. In a sample of 251 adults with DS, Urv et  al. 
[41] reported that adults with DS who converted to AD 
dementia (DSAD) display increases in depressive symp-
toms when compared with those without dementia. High 
levels of agitation, restlessness, and hyperactivity coin-
cide with early-stage dementia in other cohorts of adults 
with DS [42–44]. Increases in aggression are reported to 
be part of AD dementia in some [41, 43], but not other 
DS studies [45, 46].

Outside of DS, it has been posited that Aβ plaques and 
NFT are neurobiological mechanisms that drive BPSD 
including apathy and depression symptoms [28, 47]; thus, 
BPSD are hypothesized to be driven by early AD disease 
progression, with onset before dementia onset. To date 
little is known about the relation between Aβ plaques, 
NFT, and BPSD in DS. Prior studies [41, 43, 44, 48] have 
been largely cross-sectional, focused on later-stage dis-
ease progression (i.e., after onset of dementia) and did 
not include biomarkers of AD pathology. A better under-
standing of BPSD across AD disease progression in DS is 
needed to inform screening practices (i.e., which BPSD 
should be screened for and when) and guide the develop-
ment of treatment options and care planning (e.g., how to 
manage symptoms that interfere with daily functioning).

The goal of the current study was to describe changes 
in BPSD as AD unfolds in aging individuals with DS by 
leveraging up to four cycles of data collection spanning 
a total of up to 5.5 years from the Alzheimer Biomarker 
Consortium-Down Syndrome (ABC-DS). The research 
objectives were to: 1) determine differences in BPSD 
based on clinical AD status (i.e., cognitively stable, MCI, 
and dementia); and 2) examine the association between 
neuroimaging biomarkers of early AD pathology (i.e., 
Aβ PET and tau PET) and BPSD in individuals with DS. 
For the first research objective, it was hypothesized that 
adults with DS who were cognitively stable at baseline 
would exhibit less initial BPSD and less increase in BPSD 
over time compared to those with MCI and dementia. 
For the second research objective, it was hypothesized 
that greater baseline Aβ and tau would be associated 
with more initial BPSD and greater increase in BPSD 
over time. Based on findings in LOAD [49, 50], it was 
predicted that increases in depressive symptoms would 
occur early in AD progression, and be related to higher 
Aβ and tau in adults with DS.

Methods
Participants
Analyses included 337 adults with DS who were enrolled 
in the ABC-DS [51], an ongoing multisite (nine data col-
lection sites in the U.S. and one site in the U.K.) longi-
tudinal study aimed at characterizing imaging, biofluid, 
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behavioral, and cognitive changes associated with the 
DSAD. Within the ABC-DS study, eligible participants 
were at least 25  years old, had a mental age of at least 
three years (determined by standardized IQ tests or med-
ical records), had a study partner who was able to report 
on their medical history and functioning, and had their 
DS status and karyotyping confirmed through genetic 
testing. All participants or their legal guardian provided 
consent in accordance with the Declaration of Helsinki. If 
consent could not be provided, assent was obtained.

Procedures
Participants completed up to four time points of data 
collection, with study visits occurring between 2015 and 
2024. Each data collection cycle was spaced approxi-
mately 16  months apart (16 ± 3  months) based on study 
design. At each data collection cycle, the participant with 
DS was administered a comprehensive neuropsychologi-
cal battery and underwent magnetic resonance imaging 
(MRI) and positron emission tomography (PET) to meas-
ure AD neuropathological burden (i.e., Aβ and tau) as 
well as blood draws to measure biofluid biomarkers and 
for genetics analyses. The MRI was conducted to inter-
pret PET imaging scans. Study partners reported on the 
participants’ socio-demographics, medical history, recent 
life events, and completed questionnaires about BPSD 
and functioning. Each participant’s clinical AD status 
was determined based on a case consensus approach 
described below.

Measures
Socio‑demographic characteristics
Participants’ socio-demographic information was col-
lected at the baseline visit and included age in years, 
biological sex (coded: female = 0, male = 1), race (Non-
White = 0, White = 1), and ethnicity (Non-Hispanic = 0, 
Hispanic = 1). Apolipoprotein E (APOE) carrier status 
(ɛ4 allele absent = 0, ɛ4 allele present = 1) was deter-
mined through genetic testing. Any psychiatric diagnoses 
(coded: no = 0, yes = 1) and any psychiatric medication 
use (coded: no = 0, yes = 1) at each data collection cycle 
was also recorded. Premorbid intellectual disability (ID) 
level was based on IQ and adaptive behavior testing 
results reported in medical records or through the Stan-
ford-Binet Intelligence Scales, Fifth Edition (SB5) [52] 
Abbreviated Battery and Vineland Adaptive Behavior 
Scales, Third Edition (VABS) [53]. Mild ID (coded 0) was 
defined as IQ scores between 50–69 and commensurate 
VABS score, moderate ID (coded 1) as IQ between 35–49 
and commensurate VABS score, and severe/profound ID 
(coded 2) as IQ < 35 and commensurate VABS score. The 
lowest possible SB5 Abbreviated IQ score is 40 and thus 

mental age 3 was used to differentiate individuals with 
moderate from severe/profound ID.

Clinical AD status
Clinical AD status was determined via a consensus 
approach that included a psychologist, physician, and 
at least two other members of the research team with 
expertise in AD in DS. Individuals involved in these con-
sensus conversations were blind to neuroimaging and 
biofluid AD biomarker data. Clinical AD status was based 
on review of all available study partner-reported meas-
ures of daily functioning, medical history, and directly-
administered neuropsychological measures. Decisions 
considered premorbid ID and recent stressful live events. 
Participants were classified as either: (1) cognitively sta-
ble, (2) MCI, (3) dementia, or (4) unable to determine 
[51]. Cognitively stable participants did not show signs 
of dementia-related decline. Participants with MCI evi-
denced mild decline in cognitive skills on some but not 
all directly-administered cognitive measures but did not 
evidence significant declines in their functional ability as 
reported by their study partner. Participants with demen-
tia evidenced marked cognitive declines across directly 
administered measures and were reported by caregivers 
to have marked functional declines. A status of unable to 
determine was given if cognitive level was unclear and/or 
if cognitive or functional decline were present but medi-
cal conditions or recent life events could not be ruled 
out as the cause. For these reasons, this status group was 
excluded from analyses. Full details on the clinical con-
sensus process have been published [51].

BPSD symptoms—Reiss Screen for Maladaptive Behavior
The Reiss Screen for Maladaptive Behavior (RSMB) is a 
38-item questionnaire that measures internalizing and 
externalizing behavior problems in individuals with ID 
[54]. Study partners are asked to rate each item based on 
the participants’ behavior in the past 2 to 3  months as: 
“no problem” (i.e., does not apply or is not sufficiently 
frequent, intense, or severe; scored 0), a “problem” (i.e., 
causes significant discomfort and interference in daily 
functioning; scored 1), or a “major problem” (i.e., causes 
great suffering and/or occurs with very high frequency 
and intensity; scored 2). The RSMB includes eight sub-
domains: (a) Aggression (e.g. physical or verbal attacks 
on others), (b) Autism (e.g., repetitive movements that 
are non-functional) which we renamed Restricted and 
Repetitive Behaviors, (c) Psychosis (e.g., beliefs that are 
not based on reality), (d) Paranoia (e.g., mistrust and sus-
picion of others), (e) Depression—Behavior Symptoms 
(e.g., crying spells), (f ) Depression- Physical Symptoms 
(e.g., lacks energy), (g) Dependent Personality (e.g., exces-
sive reliance on others), and (h) Avoidant (e.g., avoids 
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interactions with others). These subdomains are not 
intended to screen for clinically significant psychiatric 
conditions but rather assess for the presence and sever-
ity of symptoms. Subdomain scores and RSMB Total 
score were used in analyses to reflect level of BPSD (i.e. 
frequency and severity). Prior studies provide evidence of 
good concurrent validity of the RSMB with other instru-
ments measuring challenging behaviors, including the 
Adaptive Behavior Scale Part II and Aberrant Behavior 
Checklist [55, 56]. However, it should be noted that the 
RSMB was not developed to screen for BPSD.

MRI processing
MRI scans were used to process and interpret PET scans 
(described below) and were acquired on a 3  T GE Dis-
covery MR750, Siemens Trio, Siemens Prisma, or GE 
Signa PET/MR depending on the imaging site. High-res-
olution T1-weighted (T1W) images were acquired using 
a 3D fast spoiled gradient echo (FSPGR) or magnetiza-
tion prepared rapid acquisition gradient echo (MPRAGE) 
sequence. MRIs were acquired at the same visit as the 
individual’s neuropsychological evaluation. Previous 
work has described the processing techniques for MRI 
scans in this cohort [51]. In brief detail, a subset of T1w 
scans was parcellated using FreeSurfer v5.3.0, produc-
ing native space versions of the Desikan-Killiany atlas 
for each scan [57]. Results were inspected, and 12 high-
quality parcellations were selected as templates. The 12 
templates were warped into each participant’s native MR 
space using the Advanced Neuroimaging Tools (ANTs) 
software package [58, 59]. A final native space atlas was 
created for each scan by determining the maximum 
overlap of each parceled region from the 12 warped tem-
plates. All results were accepted or rejected based on a 
visual rating of the final atlas’ adherence to the MR anat-
omy of the participant. In a few cases, if the multi-tem-
plate method did not produce acceptable parcellations, 
the direct application of FreeSurfer on the scan was used. 
Each participant-specific atlas was used to construct the 
six Braak regions [60, 61].

PET processing
PET scans were acquired on a variety of PET and PET/
CT platforms with each certified for multi-center studies, 
as described in Handen et al. [51] The amyloid PET scans 
were acquired with either [11C]PiB or [18F]florbetapir 
measuring PET Aβ signal 50–70 min post-injection. The 
tau PET scans were acquired with [18F]AV-1451, meas-
uring PET NFT signal 80–100  min post-injection. PET 
images were acquired in 5-min frames, corrected for 
motion on a frame-by-frame basis using SPM8, and time 
averaged. The amyloid PET scans were used to calculate 
global amyloid burden with the Centiloid method [62] 

using SPM8 software. PET scans were harmonized across 
study sites [51] and PET images were registered with 
their corresponding anatomical MR images. The MR scan 
then underwent deformable registration to the 152-sub-
ject Montreal Neurological Institute (MN152) template. 
Co-registered PET images were warped into the MNI152 
template space using the resulting transformation matrix. 
Standard uptake value ratios (SUVR) were calculated for 
the standard global region, using the whole cerebellum 
for reference, and converted to Centiloids (CL) with the 
published Eq [62]. The  [18F]AV-1451 NFT images were 
used to calculate NFT burden; PET images were similarly 
registered with corresponding structural T1 MRIs. Con-
centration of  [18F]AV-1451 was expressed as SUVR in the 
parcellation-defined Braak regions [60], using cerebellar 
grey matter as reference. Braak stage II NFT burden has 
shown modest sensitivity to neuropathological changes 
[63]. Thus, for the current analyses, SUVR in Braak stages 
I (transentorhinal cortex) and II (entorhinal cortex and 
hippocampus) were used as a combined indicator of early 
NFT burden.

Data analysis
Statistical analyses were completed using SAS version 
9.4 (SAS Institute Inc., Cary, NC) and data visualiza-
tion was completed using SPSS version 29 (IBM SPSS 
Statistics). Descriptive statistics were used to character-
ize the study sample. Linear mixed effects models using 
restricted maximum likelihood (REML) were estimated 
to explore longitudinal associations while controlling for 
and examining between-person differences in BPSD pro-
gression. Specifically, we tested within-person changes 
in RSMB scores predicted by (a) clinical AD status, and 
(b) AD biomarkers of PET Aβ and PET NFT. SAS PROC 
MIXED was used for modeling fixed effects with random 
intercept terms and a random effect for study site loca-
tion. Time (latency in years since baseline) was entered 
in level 1. Chronological age (in years) mean-centered at 
baseline, sex, premorbid ID level, APOE e4 allele carrier 
status, psychiatric diagnoses, and psychiatric medication 
use were entered as covariates at level 2. Maximum likeli-
hood ratio (−2ΔLL) tests were conducted to see if add-
ing fixed interaction effects between time and the three 
predictors of interest (i.e., clinical AD status, PET Aβ, 
and PET NFT) improved model fit. Quadratic models 
were tested to examine potential non-linear associations 
between the main predictors and outcomes. The model 
fit did not improve when including quadratic functions. 
See Supplemental Statistical Models for each equation. 
Separate moderation analyses were also conducted to test 
the impact of fixed interaction effects between time and 
four covariates (i.e., age, sex, premorbid ID, and APOE 
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e4 allele carrier status) on model fit in analyses of RSMB 
scores predicted by clinical AD status.

Results
Table  1 includes socio-demographic information for all 
study participants according to clinical AD status. Sup-
plemental Table 1 provides the mean and SD for RSMB 
scores by clinical AD status across all data collection 
cycles. Of the 337 participants, 222 (65.9%) under-
went Aβ PET scans and 143 (42.4%) also underwent tau 
PET scans. One individual was excluded from the clini-
cal AD status and Aβ analyses due to missing covariate 
information. At baseline, 73.3% (n = 247) were cogni-
tively stable, 14.2% (n = 48) had MCI, and 12.5% (n = 42) 
had dementia. On average, participants were 45  years 
old (M = 45.13, SD = 9.53), 54.3% were male, 96.7% were 
White, and 95.8% were non-Hispanic. Premorbid ID lev-
els were: 47.2% mild, 44.2% moderate, and 8.6% severe 
or profound. Approximately one-fourth of participants 
(24.9%) were APOE e4 allele carriers. At baseline aver-
age RSMB Total score was 3.15 (SD = 4.60); the highest 
average RSMB subdomain score was for Depression-
Physical (M = 0.93, SD = 1.48), while the lowest average 

RSMB subdomain score was for Restricted and Repeti-
tive Behaviors (M = 0.32, SD = 0.75). Participants without 
Aβ PET or tau PET data did not significantly differ from 
participants with imaging data with respect to APOE e4 
allele carrier status or premorbid ID levels. However, par-
ticipants with Aβ PET scans were younger (M = 42.63, 
SD = 9.46) than those without Aβ PET scans (M = 49.95, 
SD = 7.65), t(276.83) = −7.66, p < 0.001. Similarly, partici-
pants with tau PET were younger (M = 38.73, SD = 8.34) 
than those without tau PET (M = 49.84, SD = 7.37), 
t(335) = −12.93, p < 0.001. More male participants had Aβ 
PET scans than female participants, χ2 (1, N = 337) = 6.97, 
p = 0.008.

Clinical dementia status predicting BPSD
Mixed effects models examining differences in RSMB 
scores predicted by clinical AD status are presented in 
Table  2. The log-likelihood ratio tests were significant 
(p < 0.05) for all RSMB subdomains except for Aggres-
sion, Restricted and Repetitive Behaviors, Avoidant, 
Dependent Personality, and Paranoia; thus, interac-
tions between baseline clinical AD status and study 
cycle to predict BPSD change were examined for 

Table 1 Baseline sample demographics across clinical AD status

RSMB Reiss Screen for Maladaptive Behavior, AD Alzheimer’s Disease, MCI Mild cognitive impairment

Cognitively stable MCI Dementia

Variables N or M % or SD N or M % or SD N or M % or SD

Sex

 Male 132 53.44 33 68.75 18 42.86

Race

 White 237 97.13 45 93.75 40 97.56

Ethnicity

 Non‑Hispanic 234 94.74 48 100 41 97.62

Intellectual Disability

 Mild 121 48.99 20 41.67 18 42.86

 Moderate 106 42.91 24 50.00 19 39.58

 Severe 20 8.10 4 8.33 5 11.90

APOE4

 Yes 49 19.92 17 35.42 18 42.86

Age (years) 42.20 9.00 52.17 5.60 54.31 5.08

RSMB

 Aggression 0.43 1.11 0.69 1.43 1.33 2.18

 Restricted/Repetitive 0.25 0.69 0.56 0.92 0.48 0.77

 Depression‑Behavior 0.46 1.08 0.71 1.41 1.02 1.09

 Depression‑Physical 0.74 1.32 1.15 1.35 1.76 2.09

 Avoidant Personality 0.41 0.82 0.69 1.22 0.98 1.26

 Dependent Personality 0.59 1.15 0.85 1.40 1.05 1.29

 Psychosis 0.32 0.83 0.54 0.90 1.02 1.07

 Paranoia 0.32 0.79 0.58 1.24 0.62 1.19

 Total Score 2.47 4.03 3.90 4.80 6.31 5.97
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Depression-Behavior, Depression-Physical, Psycho-
sis, and Total RSMB. Main effects for clinical AD status 
were statistically significant for participants with demen-
tia (Aggression, Avoidant, Dependent Personality, and 
Paranoia) and MCI (Restricted and Repetitive Behav-
iors, Avoidant, and Paranoia), such they had higher lev-
els of these BPSD than cognitively stable participants. In 
models with interaction terms, participants with MCI at 
baseline compared to those who were cognitively stable 
had significantly greater changes in Depression-Behavior 

(b = 0.175, p < 0.001, 95% CI [0.077, 0.273]), Depression-
Physical (b = 0.164, p < 0.01, 95% CI [0.042, 0.286]), Psy-
chosis (b = 0.120, p < 0.01, 95% CI [0.034, 0.205]), and 
Total RSMB (b = 0.504, p < 0.01, 95% CI [0.146, 0.862]). 
Figure  1 depicts the relation between baseline clini-
cal AD status and average change in RSMB subdomains 
and Total RSMB across time, unadjusted for covariates. 
Relative to participants who were cognitively stable at 
baseline, participants who had a clinical AD status of 
dementia did not have any significantly different changes 

Table 2 Multilevel models of clinical AD status at baseline predicting RSMB

N = 336. Unstandardized coefficients (Bs) are presented. All models include a random intercept and control for study site, age at baseline, sex, APOE ϵ4 carrier status, 
premorbid intellectual disability, psychiatric medications, and psychiatric diagnoses. Main effects were entered into models with interactions. Cognitively stable is 
reference group

RSMB Reiss Screen for Maladaptive Behavior, MCI Mild cognitive impairment
***  p < .001. ** p < .01. * p < .05

Estimates

RSMB Fixed Effects B SE t df 95% CI

Aggression Intercept 0.176 0.113 1.56 328 [−0.046, 0.398]

Time 0.001 0.017 0.350 728 [−0.028, 0.040]

MCI 0.279 0.168 1.660 728 [−0.051, 0.608]

Dementia 0.591 0.187 3.160** 728 [0.223, 0.958]

Restricted/Repetitive Intercept 0.060 0.066 0.910 328 [−0.070, 0.190]

Time 0.015 0.012 1.260 729 [−0.008, 0.037]

MCI 0.315 0.095 3.321** 729 [0.128, 0.501]

Dementia 0.138 0.107 1.280 729 [−0.073, 0.349]

Depression‑Behavior Intercept 0.551 0.093 5.920*** 328 [0.368, 0.734]

Time x MCI 0.175 0.050 3.510*** 725 [0.077, 0.273]

Time x Dementia −0.097 0.059 −1.63 725 [−0.213, 0.020]

Depression‑Physical Intercept 0.541 0.122 4.420*** 328 [0.300, 0.781]

Time x MCI 0.164 0.062 2.630** 727 [0.042, 0.286]

Time x Dementia −0.056 0.075 −0.740 727 [−0.202, 0.091]

Avoidant Intercept 0.215 0.098 2.190* 328 [0.022, 0.407]

Time 0.037 0.016 2.230* 729 [0.004, 0.069]

MCI 0.557 0.141 3.940*** 729 [0.279, 0.835]

Dementia 0.579 0.160 3.630*** 729 [0.266, 0.892]

Dependent Intercept 0.526 0.099 5.330*** 328 [0.332, 0.720]

Time −0.010 0.016 −0.610 729 [−0.042, 0.022]

MCI 0.281 0.143 1.960 729 [−0.001, 0.562]

Dementia 0.384 0.161 2.380* 729 [0.068, 0.701]

Psychosis Intercept 0.255 0.082 3.130** 328 [0.094, 0.415]

Time x MCI 0.120 0.043 2.750** 727 [0.034, 0.205]

Time x Dementia 0.005 0.052 0.100 727 [−0.097, 0.107]

Paranoia Intercept 0.233 0.078 2.959** 328 [0.080, 0.386]

Time 0.011 0.013 0.900 729 [−0.013, 0.036]

MCI 0.257 0.113 2.260* 729 [0.034, 0.478]

Dementia 0.261 0.127 2.050* 729 [0.010, 0.511]

Total Intercept 1.847 0.386 4.780*** 328 [1.088, 2.607]

Time x MCI 0.504 0.182 2.770** 727 [0.146, 0.862]

Time x Dementia −0.201 0.220 −0.910 727 [−0.633, 0.231]
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in BPSD. Males had significantly lower Depression-
Behavior (b = −0.309, p < 0.001, 95% CI [−0.464, −0.154]), 
Dependent Personality (b = −0.313, p < 0.001, 95% CI 
[−0.494, −0.131]), and Total RSMB (b = −0.862, p = 0.02, 
95% CI [−1.570, −0.153]) scores than females. Psychiatric 
medication use was statistically significant in all models 
except for Depression-Behavior, and psychiatric diagno-
ses was significant in all models except for Restricted and 
Repetitive Behaviors, Avoidant, and Psychosis. Addition-
ally, model fit improved for two moderation analyses with 
fixed interaction effects between time and the covariates 
premorbid ID and APOE4. Individuals with severe ID 
experienced a greater change in Depression-Behavior 

over time than individuals with mild ID (b = 0.148, 
p = 0.02, 95% CI [0.035, 0.261]), and APOE4 allele carriers 
experienced lower Aggression scores over time than non-
carriers (b = −0.07, p = 0.05, 95% CI [−0.138, −0.001]).

Supplemental Table  2 provides cross-tabulations of 
participants’ change in clinical AD status over the course 
of the study.

Aβ burden predicting BPSD
Table 3 presents results of the mixed effects models with 
Aβ at baseline predicting RSMB scores over time in 221 
participants, after controlling for relevant covariates 
(age, biological sex, premorbid ID, APOE allele 4 carrier 

Fig. 1 Marginal Means of RSMB Scores by Baseline Clinical AD Status. Note. Marginal means for the Reiss Screen of Maladaptive Behavior (RSMB) 
across four data collection cycles for depression‑behavior (A) depression‑physical (B), psychosis (C), and total (D) for cognitively stable (blue), mild 
cognitive impairment (green), and dementia (red)
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status, study site, psychiatric medications and diagnosis). 
The log-likelihood ratio tests were significant (p < 0.05) 
for all RSMB subdomains except for Aggression, Avoid-
ant, and Dependent Personality; thus, interactions 
between baseline clinical AD status and study cycle to 
predict BPSD change were examined for Restricted and 
Repetitive Behaviors, Depression-Behavior, Depression-
Physical, Psychosis, Paranoia, and Total RSMB. The main 
effect for Aβ was statistically significant for Avoidant 
(b = 0.005, p = 0.04, 95% CI [0.000, 0.009]), but not for the 
Aggression and Dependent Personality models. For mod-
els with interactions, higher levels of Aβ at baseline were 
significantly associated with increase in BPSD over time 
for all RSMB subdomains and Total RSMB (b = 0.008, 
p < 0.001, 95% CI [0.004, 0.012]). Figure 2 depicts the rela-
tion between baseline Aβ and average change in RSMB 
subdomains and Total RSMB across time, unadjusted for 
covariates. For visualization, participants are grouped 
by low versus high Aβ using centiloid threshold of 31.17 
(i.e., average or above average/below average). Males had 
significantly lower Depression-Behavior (b = −0.300, 
p < 0.01, 95% CI [−0.497, −0.104]) and Dependent Per-
sonality (b = −0.384, p < 0.01, 95% CI [−0.619, −0.149]) 

scores than females. Those who were APOE ϵ4 allele car-
riers had lower Aggression (b = −0.308, p = 0.03, 95% CI 
[−0.594, −0.022]) scores than non-carriers. Younger par-
ticipants had higher Restricted and Repetitive Behaviors 
(b = −0.012, p = 0.04, 95% CI [−0.024, −0.001]) scores 
than older participants. Psychiatric medication use was 
statistically significant in all models except for Aggres-
sion, Depression Behavior, Dependent Personality, Psy-
chosis, and Paranoia, and psychiatric diagnoses was 
significant in all models except for Restricted and Repeti-
tive Behaviors.

Tau burden predicting BPSD
Table 4 presents results of the mixed effects models with 
tau at baseline predicting RSMB scores over time in 143 
participants, after controlling for relevant covariates. The 
log-likelihood ratio tests were significant (p < 0.05) for all 
RSMB subdomains except for Aggression, Restricted and 
Repetitive Behaviors, Depression-Behavior, Avoidant, 
Dependent Personality, and Paranoia; thus, interactions 
between tau and study cycle to predict BPSD change 
were examined for Depression-Physical, Psychosis, 
and Total RSMB. Main effects for tau were statistically 

Table 3 Multilevel models of amyloid at baseline predicting RSMB

N = 221. Unstandardized coefficients (Bs) are presented. RSMB = Reiss Screen for Maladaptive Behavior. All models include a random intercept and control for study 
site, age at baseline, sex, APOE ϵ4 carrier status, premorbid intellectual disability, psychiatric medications, and psychiatric diagnoses. Main effects were entered into 
models with interactions
***  p < .001. ** p < .01. * p < .05

Estimates

RSMB Fixed Effects B SE t df 95% CI

Aggression Intercept 0.174 0.142 1.220 214 [−0.106, 0.453]

Time 0.009 0.016 0.590 507 [−0.022, 0.041]

Amyloid‑β 0.004 0.002 1.550 507 [−0.001, 0.008]

Restricted/Repetitive Intercept 0.004 0.092 0.050 214 [−0.177, 0.186]

Time x Amyloid‑β 0.002 0.001 2.900** 506 [0.001, 0.003]

Depression‑Behavior Intercept 0.478 0.121 3.950*** 214 [0.239, 0.716]

Time x Amyloid‑β 0.002 0.001 2.880** 506 [0.001, 0.003]

Depression‑Physical Intercept 0.599 0.177 3.390*** 214 [0.250, 0.947]

Time x Amyloid‑β 0.002 0.001 2.940** 506 [0.001, 0.003]

Avoidant Intercept 0.134 0.137 0.980 214 [−0.135, 0.403]

Time 0.047 0.019 2.500* 507 [0.010, 0.083]

Amyloid‑β 0.005 0.002 2.010* 507 [0.000, 0.009]

Dependent Intercept 0.521 0.137 3.800*** 214 [0.251, 0.790]

Time 0.001 0.019 −0.040 507 [−0.038, 0.036]

Amyloid‑β 0.004 0.002 1.660 507 [−0.001, 0.008]

Psychosis Intercept 0.205 0.109 1.890 214 [−0.009, 0.419]

Time x Amyloid‑β 0.002 0.000 4.630*** 506 [0.001, 0.003]

Paranoia Intercept 0.238 0.099 2.410* 214 [0.043, 0.433]

Time x Amyloid‑β 0.002 0.000 3.470*** 506 [0.001, 0.002]

Total Intercept 1.889 0.540 3.500*** 214 [0.826, 2.953]

Time x Amyloid‑β 0.008 0.002 4.000*** 506 [0.004, 0.012]
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Fig. 2 Marginal Means of RSMB Scores by Average Baseline Amyloid. Note. Marginal means for the Reiss Screen of Maladaptive Behavior (RSMB) 
across four data collection cycles for restricted and repetitive (A), depression‑behavior (B), depression‑physical (C), psychosis (D), paranoia (E), 
and total (F) for average or above average Aβ (green) and below average Aβ (blue)
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significant for Restricted and Repetitive Behaviors 
(b = 0.540, p = 0.05, 95% CI [0.006, 1.073]), Depression-
Behavior (b = 0.950, p < 0.01, 95% CI [0.328, 1.563]), 
Avoidant (b = 1.365, p < 0.01, 95% CI [0.492, 2.238]), and 
Dependent Personality (b = 1.153, p = 0.01, 95% CI [0.262, 
2.043]). For models with interactions, higher levels of tau 
at baseline were significantly associated with increase 
in BPSD over time for all RSMB subdomains and Total 
RSMB (b = 1.305, p = 0.001, 95% CI [0.532, 2.078]). Fig-
ure 3 depicts the relation between baseline tau and aver-
age change in RSMB subdomains and Total RSMB across 
time, unadjusted for covariates. For visualization, par-
ticipants are grouped by low versus high tau using SUVR 
threshold of 1.18 (i.e., average or above average/below 
average). Males had significantly lower Depression-
Behavior (b = −0.308, p < 0.01, 95% CI [−0.511, −0.106]) 
and Dependent Personality (b = −0.356, p = 0.02, 95% CI 
[−0.653, −0.060]) scores than females. Those who were 
APOE ϵ4 allele carriers had higher Depression-Behavior 

(b = 0.253, p = 0.04, 95% CI [0.012, 0.493]) scores than 
non-carriers. Younger participants had significantly 
higher Restricted and Repetitive Behaviors (b = −0.016, 
p = 0.02, 95% CI [−0.028, −0.003]) scores than older par-
ticipants, and these behaviors were reported more in 
participants with severe ID (b = 0.297, p = 0.04, 95% CI 
[0.014, 0.580]) than participants with mild ID. Psychiatric 
medication use was statistically significant in all models 
except for Depression-Behavior and Dependent Person-
ality, and psychiatric diagnoses was significant in all mod-
els except for Aggression, Psychosis, and Paranoia.

Discussion
This longitudinal study investigated change in the fre-
quency of reported RSMB scores to understand BPSD 
across AD progression in adults with DS by leverag-
ing the ABC-DS study. Adults with DS who had MCI at 
baseline had higher RSMB scores than did adults with 
DS who were cognitively stable. The MCI group also 

Table 4 Multilevel models of tau at baseline predicting RSMB

N = 143. Unstandardized coefficients (Bs) are presented

All models include a random intercept and control for study site, age at baseline, sex, APOE ϵ4 carrier status, premorbid intellectual disability, psychiatric medications, 
and psychiatric diagnoses. Main effects were entered into models with interactions

RSMB Reiss Screen for Maladaptive Behavior
***  p < .001. ** p < .01. * p < .05

Estimates

RSMB Fixed Effects B SE t df 95% CI

Aggression Intercept −0.068 0.626 −0.110 136 [−1.307, 1.170]

Time −0.002 0.016 −0.150 327 [−0.035, 0.030]

Tau 0.281 0.528 0.560 327 [−0.757, 1.319]

Restricted/Repetitive Intercept −0.594 0.323 −1.840 136 [−1.232, 0.044]

Time 0.004 0.013 0.350 327 [−0.021, 0.030]

Tau 0.540 0.271 1.990* 327 [0.006, 1.073]

Depression‑Behavior Intercept −0.726 0.374 −1.940 136 [−1.466, 0.014]

Time 0.018 0.019 0.97 327 [−0.019, 0.055]

Tau 0.950 0.314 3.010** 327 [0.328, 1.563]

Depression‑Physical Intercept −0.094 0.757 −0.120 136 [−1.591, 1.403]

Time x Tau 0.515 0.158 3.270** 326 [0.205, 0.825]

Avoidant Intercept −1.280 0.528 −2.420* 136 [−2.324, −0.236]

Time 0.047 0.021 2.210* 327 [0.005, 0.088]

Tau 1.365 0.444 3.08** 327 [0.492, 2.238]

Dependent Intercept −0.855 0.538 −1.590 136 [−1.920, 0.209]

Time 0.014 0.020 0.700 327 [−0.025, 0.054]

Tau 1.153 0.453 2.550* 327 [0.262, 2.043]

Psychosis Intercept −0.392 0.445 −0.880 136 [−1.273, 0.489]

Time x Tau 0.289 0.094 3.060** 326 [0.103, 0.475]

Paranoia Intercept −0.191 0.345 −0.550 136 [−0.874, 0.492]

Time 0.023 0.014 1.620 327 [−0.005, 0.051]

Tau 0.310 0.290 1.070 327 [−0.261, 0.881]

Total Intercept −1.470 2.224 −0.660 136 [−5.870, 2.925]

Time x Tau 1.305 0.393 3.320** 326 [0.532, 2.078]
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showed greater increases in Total RSMB scores and spe-
cifically in Depression-Behavioral, Depression-Physical, 
and Psychosis RSMB scores across the 4  years than did 
the cognitively stable group. These findings highlight 
that changes in BPSD are a component of the prodromal 
stage of AD in DS, occurring prior to the onset of AD 
dementia. Thus, new or increased overreliance on others, 
restricted and repetitive behaviors, and social withdrawal 
present alongside early cognitive decline in adults with 
DS. Over time, changes in sadness and crying, eating and 
energy, and confused thinking may occur for adults with 
DS and MCI.

In models with main effects only, adults with DS who 
had AD dementia at baseline evidenced higher RSMB 
subdomains relative to adults with DS who were cog-
nitively stable. AD dementia was not significant in any 
models with interactions between baseline clinical AD 
status and study cycle. That is, after AD dementia onset, 
on average, individual behaviors and symptoms appear 
to remain elevated over 48 months and do not increase 
more. However, prior work [41, 43] indicates that this 
may be the case for overall BPSD, but not specific BPSD 
(e.g., some become elevated earlier while others become 

elevated later). These findings indicate a critical need 
for care planning and management of these symptoms 
whenever they appear.

Elevated Aβ and NFT were associated with higher 
baseline Avoidant RSMB scores, and an increase in 
Depression-Physical RSMB scores over time. These find-
ings expand on previous research that avoidant behaviors 
(e.g., social withdrawal) and depression (e.g., low energy, 
lethargic) present early on in AD progression in DS [64–
67], and it is possible that Aβ and NFT are neurobiologi-
cal mechanisms that drive these behaviors, as has been 
theorized [28, 68]. These BPSD have also been reported 
to be associated with elevated Aβ [29] and NFT [28] in 
the general adult population [23].

Across models, sociodemographic characteristics 
were related to RSMB scores. Females with DS exhibited 
higher behavioral symptoms of depression (e.g., tearful-
ness, overt sensitivity) than males. This sex difference 
has been previously reported in adults with DS [69] and 
in the general adult population [70] and has important 
implications for BPSD screening. APOE ϵ4 allele carriers 
had lower aggression symptoms over time in clinical AD 
status and Aβ models. There was a negative association 

Fig. 3 Marginal Means of RSMB Scores by Average Baseline Tau. Note. Marginal means for the Reiss Screen of Maladaptive Behavior (RSMB) 
across four data collection cycles for depression‑physical (A), psychosis (B), and total (C) for average or above average neurofibrillary tau tangles 
(NFT) (green) and below average NFT (blue)
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between age and restricted and repetitive behaviors in Aβ 
and NFT models.

The present study had both strengths and limitations. 
The study is the first, to our knowledge, longitudinally 
investigate of the relation between neuroimaging bio-
markers of early AD pathology, clinical AD status, and 
changes in BPSD in adults with DS. Study strengths also 
include the use of a large cohort of adults with DS from 
whom clinical AD status was based on a robust battery 
of direct and informant measures and made in consid-
eration of medical history, premorbid ID level, and recent 
life events. The RSMB was designed to measure maladap-
tive behaviors in individuals with ID and to distinguish 
symptoms from cognitive impairments, but was not 
specifically developed to screen for BPSD with AD. In 
addition, the RSMB assesses a limited number of symp-
toms and captures a restricted severity range (i.e., symp-
toms are rated on a three-point Likert scale) and thus 
may not have been sensitive to subtle changes in BPSD 
over the four data collection cycles. The broader array 
of BPSD reported in prior studies on AD in DS were not 
captured by the RSMB, nor was the RSMB able to pro-
vide in depth information on type of symptoms (e.g., 
apathy versus other behavioral depressive symptoms) 
[37, 43]. The RSMB is also open to potential biases as it 
is an informant report of internalizing and externalizing 
behaviors. Future studies should draw on self-report and 
structured clinical interviews of BPSD. The present study 
did not account for potential changes in specific psychi-
atric medications (e.g., antipsychotics, antidepressants) 
across study cycles, which could have reduced our ability 
to detect symptom increases. It should also be noted that 
scores on the RSMB were made available during the clini-
cal AD status consensus meetings, introducing potential 
confounding. However, clinical AD status decisions were 
based on gestalt impressions drawing on multiple cogni-
tive and informant measures.

Additionally, there was a lack of racial and ethnic diver-
sity in the sample, and participants with mild ID and/or 
were younger were overrepresented in the ABC-DS sam-
ple. The age difference between participants with versus 
without PET scans is likely a reflection of study design; 
the ABC-DS study merges two legacy studies—the study 
that conducts the most brain imaging historically had 
a lower age range for study inclusion. Study sites have 
efforts underway to increase sample diversity as this is 
critical for the field moving forward. Further research 
should also examine whether Aβ or NFT burden in spe-
cific brain regions drives BPSD as AD unfolds in DS.

In conclusion, findings from the present study have 
important implications for screening and diagnosis 
of MCI and AD dementia in adults with DS. Findings 
also have relevance for directing interventions for care 

planning and alleviating BPSD at different stages in AD 
progression in adults with DS. Increases in social with-
drawal, low energy, and lethargy may indicate that an 
adult with DS is in the preclinical stage of AD (evident 
by elevated Aβ and tau). New or increased difficulties in 
these behaviors may appear at the time of MCI with sub-
sequent increases more broadly in BPSD occurring from 
early to late stages of dementia. Screening protocols for 
AD in adults with DS should differentiate psychiatric 
causes of dementia-like symptoms, ideally with measures 
developed for assessing BPSD. However, it is also impor-
tant for clinicians to rule out other causes for BPSD, as 
new or increases in symptoms can also occur outside of 
AD pathology and be due to factors such as life experi-
ences (recent stressful life events) or other co-occurring 
medical or biological conditions (e.g., thyroid conditions, 
pain). It is also important for caregivers of adults with DS 
to be educated about the types of BPSD that are a com-
mon part of AD and strategies for managing these symp-
toms, including not only pharmaceutical options but also 
behavior management techniques, safety planning, and 
self-care for the caregiver.
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