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Abstract
Background Tuberous Sclerosis Complex (TSC) is a rare genetic condition caused by mutation to TSC1 or TSC2 
genes, with a population prevalence of 1/7000 births. TSC manifests behaviorally with features of autism, epilepsy, and 
intellectual disability. Resting state electroencephalography (EEG) offers a window into neural oscillatory activity and 
may serve as an intermediate biomarker between gene expression and behavioral manifestations. Such a biomarker 
could be useful in clinical trials as an endpoint or predictor of treatment response. However, seizures and antiepileptic 
medications also affect resting neural oscillatory activity and could undermine the utility of resting state EEG features 
as biomarkers in neurodevelopmental disorders such as TSC.

Methods This paper compares resting state EEG features in a cross-sectional cohort of young children with TSC 
(n = 49, ages 12–37 months) to 49 age- and sex-matched typically developing controls. Within children with TSC, 
associations were examined between resting state EEG features, seizure severity composite score, and use of GABA 
agonists.

Results Compared to matched typically developing children, children with TSC showed significantly greater beta 
power in permutation cluster analyses. Children with TSC also showed significantly greater aperiodic offset (reflecting 
nonoscillatory neuronal firing) after power spectra were parameterized using SpecParam into aperiodic and periodic 
components. Within children with TSC, both greater seizure severity and use of GABAergic antiepileptic medication 
were significantly and independently associated with increased periodic peak beta power.

Conclusions The elevated peak beta power observed in children with TSC compared to matched typically 
developing controls may be driven by both seizures and GABA agonist use. It is recommended to collect seizure and 
medication data alongside EEG data for clinical trials. These results highlight the challenge of using resting state EEG 
features as biomarkers in trials with neurodevelopmental disabilities when epilepsy and anti-epileptic medication are 
common.
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Background
Electroencephalography (EEG) offers a low-cost, non-
invasive neuroimaging method that is feasible in people 
of all ages and abilities. As such, EEG holds promise as 
a potential tool to examine brain-based biomarkers for 
prediction of treatment response for neurodevelopmen-
tal disabilities. EEG-based biomarkers could be particu-
larly useful as an endpoint in clinical trials in rare genetic 
syndromes; for these conditions, diagnostic biomarkers 
already exist (i.e., genetic testing) but biomarkers of treat-
ment response or prognostication remain elusive. Many 
children with neurodevelopmental disabilities such as 
Tuberous Sclerosis Complex (TSC) experience seizures 
[1] and may be prescribed EEG-altering antiepileptic 
medications. However, seizures and antiepileptic medica-
tions may limit the reliability of resting EEG biomarkers. 
We must understand the impact of seizures and anti-
epileptic medication on the EEG power spectrum given 
current interest in EEG-based biomarkers as clinical trial 
endpoints for neurodevelopmental disabilities like TSC, 
autism, and others [2–5]. The lessons learned from TSC 
in the search for EEG-based biomarkers might extend 
to other neurodevelopmental disabilities as well, since 
there is a high prevalence of seizures in many neurode-
velopmental disabilities such as Rett Syndrome (60–80% 
[6]), Fragile X Syndrome (20% [1]), 22q11.2 Deletion 
Syndrome (11% [7]), CDKL5 Deficiency Disorder (nearly 
100% [1]), autism (12% [8]) and others.

Tuberous Sclerosis Complex
Tuberous Sclerosis Complex (TSC) is a rare autosomal 
dominant disorder that results from mutations in the 
TSC1 or TSC2 genes. TSC has a prevalence of approxi-
mately 1 in 7,000 births and is usually detected in utero 
or the first year of life [9]. The inactivation of TSC1/
TSC2 leads to overactivation of the mammalian target 
of rapamycin (mTOR) pathway, which in turn causes 
unchecked cell growth and proliferation in some regions 
of the body, particularly the heart, kidneys, skin, and 
brain. In the brain, individuals with TSC show hamar-
tomas, including cortical tubers, that impact neuronal 
function and connectivity [10]. Most children with TSC 
have epilepsy (70–80% [11]) and co-occurring autism 
(between 46 and 66% [12]). Families increasingly report 
that their greatest concerns are the TSC-associated neu-
ropsychiatric disorders (TAND) that many individu-
als with TSC exhibit, such as autism and intellectual 
disability.

Previous EEG research in infants and toddlers with 
TSC has identified reduced maturity and connectivity 
in the EEG power spectrum [13, 14], and some of these 

differences have predicted later cognitive development 
and autistic features [13, 15]. Studies of older children, 
adolescents, and adults have reported alterations in con-
nectivity [16–18] and task-based differences [19, 20]. In a 
younger cross-sectional sample of 10 toddlers with TSC 
and 12 typically developing children ages 18–30 months, 
Stamoulis et al. (2015) noted possible delayed matura-
tion as indexed by a developmental shift of the dominant 
high-frequency spectral content that occurred later in 
children with TSC compared to typically developing con-
trols. Children with TSC maintained higher frequencies 
at older ages, with non-random EEG components pres-
ent in the high gamma (> 50  Hz) and ripple (> 80  Hz) 
frequencies [14]. De Ridder et al. (2020) also reported 
early dysmaturity in a clinical sample from the EPISTOP 
study using a different proxy of maturity. Using neonatal 
EEGs and 24-month developmental assessment data in 
64 children with TSC, De Ridder and colleagues reported 
that more dysmaturity (indexed by power, range EEG, 
entropy, and Hurst exponent) predicted more autism 
traits, as well as lower cognitive, language, and motor 
developmental scores at 24 months [13]. In a similar vein, 
Dickinson et al. (2019) examined neural network devel-
opment via features of alpha band oscillations (alpha 
power, peak alpha frequency, and alpha phase coherence) 
in a longitudinal sample from 12 to 36 months of 35 tod-
dlers with TSC and 20 typically developing toddlers. 
Toddlers with TSC showed reduced interhemispheric 
alpha phase coherence at 12 and 24 months, and the dif-
ference was more pronounced at 24 months in TSC tod-
dlers later diagnosed with autism. Peak alpha frequency 
at 24 months predicted 36 month nonverbal and verbal 
cognition in both TSC and typically developing children 
[15]. These prior studies provide valuable knowledge 
about neurophysiological differences in an understud-
ied population, yet the very different EEG metrics used 
across studies make it difficult to compare or synthesize 
findings. Finally, despite the high prevalence of epilepsy 
and antiepileptic medication use in individuals with TSC, 
none of the extant literature describing EEG findings in 
TSC have accounted for the potential impact of antiepi-
leptic medication.

Effects of seizures and medications on EEG
Seizures affect the power spectrum in a number of ways 
depending on seizure type [21, 22]. For example, chil-
dren who experience infantile spasms, a common early 
seizure type in TSC, show increased EEG amplitude and 
spectral power across all frequency bands between sei-
zure periods [23]. Focal seizures, the second predomi-
nant seizure type in TSC, lead to increased relative power 
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in beta and gamma bands [24], and gamma oscillations 
may be observed hours before seizure onset and corre-
spond to where a focal seizure will originate [25]. In addi-
tion, seizure medications influence EEG activity and the 
power spectrum. GABA agonists (e.g., vigabatrin) are 
commonly prescribed to control seizures by increasing 
inhibitory activity [26], and in both humans and animal 
models, GABA agonists have consistently been associ-
ated with increased beta power [27–30]. In pharmaco-
logical studies of healthy adults, the administration of 
GABA agonists appears to consistently increase beta 
power [31–33], but results differ on whether peak beta 
frequency is unaltered [31, 32] or decreased with the 
spectral peak widened [34].

Periodic and aperiodic powers
Prior studies investigating the EEG power spectra in 
TSC have largely focused on absolute or relative power. 
However, parametrization of the power spectrum into 
aperiodic and periodic components can provide a more 
accurate estimate of non-oscillatory and oscillatory activ-
ity [35, 36], and may be valuable in considering differ-
ences in excitatory/inhibitory balance and the impact of 
seizure medications on beta oscillations in TSC (Fig. 1). 
The aperiodic component of the power spectra is defined 
by the 1/f power law distribution of the absolute power 
spectra. The aperiodic component can be described by 
an offset and slope (defined as the χ in the 1/fχ formula), 

with the offset thought to reflect broadband, non-rhyth-
mic firing [37, 38], and the slope hypothesized to reflect 
the state of excitatory-inhibitory (E/I) balance in the net-
work. Studies from human, animal, and computational 
models suggest that a flatter (reduced) slope is associ-
ated with increased excitation over inhibition [39–41]. 
The periodic component, defined by the portion of the 
absolute spectrum rising above the aperiodic component, 
reflects oscillatory activity in narrow frequency bands 
[35, 42]. As there are individual differences in both the 
aperiodic and periodic components, parametrization of 
each can provide a more accurate measurement of peak 
amplitude and peak frequency of different narrow band 
oscillations [35, 36, 42].

This study
In order to explore the feasibility of resting EEG as a 
biomarker in neurodevelopmental disabilities like TSC, 
the present study aims to first characterize the resting 
state EEG power in toddlers with TSC against age- and 
sex-matched typically developing children. Specifically, 
we present analyses using absolute, aperiodic, and peri-
odic power that allow for comparison to prior studies 
that reported findings regarding absolute EEG power or 
maturity in young children with TSC. Second, we lever-
age seizure frequency and medication information to 
quantify the effects of seizure and medications on the 
TSC resting state power spectrum. We hypothesize that 

Fig. 1 Decomposition of absolute spectral power into periodic and aperiodic components. The absolute power spectrum can be decomposed into the 
periodic and aperiodic components by fitting an exponential decay curve (y = 1/f ) to the absolute power spectrum to model the aperiodic component. 
The 1/f curve (aperiodic component) can be described with the offset value (similar to intercept) and exponent (reflects how steep or shallow the curve 
is, similar to slope). The modeled 1/f curve can then be subtracted from the absolute power spectrum, leaving only the periodic, oscillatory curve. This 
decomposition can be implemented using the SpecParam algorithm [36] (also known as FOOOF v 1.0.0 [35])
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GABAergic medications will be associated with increased 
inhibitory activity in children with TSC as reflected by 
increased beta power. We hypothesize that the effects of 
seizures will be confounded and overshadowed by GAB-
Aergic medication use, as prior research has shown that 
both increases in GABA receptors and epileptic activity 
are associated with increases in beta power.

Methods
Participants
Young children with TSC were recruited into a multi-
site randomized control trial (JETS: NCT03422367) of a 
behavioral intervention to target social communication 
skills (JASPER: Joint Attention, Symbolic Play, Engage-
ment & Regulation [43]) between 2017 and 2023. Chil-
dren traveled to one of the two participating sites (Boston 
Children’s Hospital or UCLA Health) for a two-day base-
line in-person assessment that included clinical char-
acterization and EEG data collection. This manuscript 
reports baseline assessment data only.

Children between ages 12 and 56 months with a clini-
cal diagnosis of TSC diagnosis were eligible for the study, 
and 57 provided resting state EEG recordings. Seven 
individuals with TSC were excluded because they did not 
have EEG recordings that met quality control thresholds 
(see below), and one individual with TSC was excluded 
from this analysis to facilitate matching with a typically 
developing control cohort. The final sample included 
49 children. The age range of children included in this 
cross-sectional analysis was 12–37 months (M = 22.2(7.4) 
months; Table  1). Consistent with the literature, 40.8% 
of TSC participants were reported to have experienced 
at least one seizure in the last month, 67.4% currently or 
previously experienced infantile spasms, and 96% were 
taking at least one medication (M = 2.4(1.4) medication). 
MRI and tuber location were not available.

Comparison data from typically developing (TD) chil-
dren was drawn from the Infant Screening Project 2 
(ISP2), a longitudinal study of development that was 

conducted at Boston Children’s Hospital and Boston 
University from 2015 to 2020 (IRB P00018377). Devel-
opmental and EEG data were collected longitudinally at 
12, 18, 24, and 36 months. Data from one timepoint per 
child were drawn from the ISP2 dataset to create a cross-
sectional cohort of typically developing children matched 
1:1 on age and sex with the TSC cohort. Children 
selected for the typically developing comparison cohort 
met the following criteria: no developmental delay con-
firmed by parent report and/or scores on standardized 
developmental assessments (e.g., Vineland, Mullen Scales 
of Early Learning), no history of seizures, no first degree 
relative with autism spectrum disorder, birthweight > 5.5 
pounds, gestational age ≥36 weeks, and no genetic or 
neurological condition.

Measures
Clinical
Seizure, infantile spasm, and medication data were col-
lected from parent report at baseline (Fig.  2). Since 
GABAergic medications are known to cause increased 
beta power [44], seizure medications were classified by 
mechanism of action into GABAergic medications and 
non-GABAergic medications (Table S1). As children with 
TSC have varying degrees of seizure activity, a composite 
seizure severity score was created using the E-Chess [45] 
to integrate frequency, medications, and types of seizures 
according to parent report. The seizure severity score 
ranged from 0 to 12 and reflected the sum of three vari-
ables: frequency of seizures in the last two months (0 = no 
seizures, 4 = more than daily seizures); number of current 
anti-epileptic medications (range 0–6); and total number 
of seizure types reported (1 point per type of seizure such 
as generalized, drop seizures, infantile spasms, etc.; range 
0–5). Seizure severity scores were classified as low (0–2), 
moderate (3-7), or high (8-12).

The Mullen Scales of Early Learning (MSEL) was 
administered to assess developmental level. In order to 
avoid floor effects, Developmental Quotients (DQ) for 

Table 1 Participant characteristics
Tuberous Sclerosis Complex Participants Typically developing controls

N 49 49
Age, months, mean(SD) 22.2 (7.4) 23.0 (8.1)
Sex, % male 51.0% 51.0%
Mullen Verbal Developmental Quotient, mean(SD) 63.2 (23.6) 117.9 (17.8)
Mullen Nonverbal Developmental Quotient, mean(SD) 73.1 (22.1) 114.8 (14.2)
Seizures
% current seizures (last 2 months) 40.8%
% on GABA antagonist 85.7%
% infantile spasms: current ⦁
past ⦁ no history of spasms

8.2 ⦁ 59.2 ⦁ 32.7%

Number of seizure medications 2.4 (1.4)
Surgery 8.2%
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each subscale were calculated (age equivalent / chrono-
logical age), then subscales were averaged to create a 
nonverbal DQ (visual reception + fine motor) and a verbal 
DQ (expressive language + receptive language). Autism 
diagnoses were not reliably available at the baseline time-
point given the age range of this cross-sectional cohort 
(35% of sample under 18 months).

EEG recording
Resting state EEG data were collected continuously for at 
least 2 min at UCLA or Boston Children’s Hospital in a 
dimly light, electrically-shielded, sound-attenuated room. 
The child sat on a caregiver’s lap and watched a screen-
saver-style video of bubbles. EEG data were recorded 
using a 128-channel Hydrocel Geodesic Sensor Net (EGI, 
Inc., Eugene, OR, USA) that contains sponge-based car-
bon fiber electrodes. The sponges were first soaked in a 
solution of 6mL KCl/L of water and 5 mL of baby sham-
poo to facilitate conductance, then the net was placed 
over the child’s head, and electrodes were carefully seated 
on the scalp with impedances under 100 ohms. The net 
was connected to a DC-coupled amplifier (Net Amps 
300 amplifier EGI) at a sampling rate of 500 samples per 

second, and referenced online to the vertex electrode 
(Cz). Similar data recording protocols and preprocessing 
pipelines were used for the matched typically developing 
cohort.

EEG preprocessing
Raw EEG data were collected in NetStation (Magstim 
EGI) and exported to MATLAB (version 2021b) for pro-
cessing using the Batch EEG Automated Processing Plat-
form (BEAPP version 4.1 [46]) with embedded Harvard 
Automated Preprocessing Pipeline for EEG (HAPPE 
[47]).

These automated processing pipelines were chosen 
over visual inspection methods for several reasons. First, 
automated pipelines have the advantage of removing sub-
jectivity/human error and improving reproducibility of 
analyses. HAPPE has been shown to improve data reten-
tion while successfully removing artifact when compared 
to alternative approaches, including manual segment 
rejection and ICA alone (see [47] for a report of com-
parisons). Finally, after EEGs are processed, the BEAPP/
HAPPE pipeline provides measures of data quality so 

Fig. 2 Seizure frequency, medication, and infantile spasms in individual TSC participants. Data reflect 49 participants with TSC in a randomized control 
trial of the JASPER behavioral intervention. At baseline, participants presented with heterogenous profiles of seizure frequency, GABAergic medication 
use, and presence of infantile spasms. The profile of each participant is depicted as a column of three shaded rectangles reflecting the presence (dark 
gray), absence (white), or history (light gray) of each clinical feature. For example, participant #18 outlined in red was reported at baseline to experience 
seizures at least monthly over the last two months; not to take a GABAergic medication; and to have a history of infantile spasms but not currently experi-
ence infantile spasms. Seizure severity scores are derived from the E-Chess [45] and incorporate the frequency of seizures, types of seizures (including 
infantile spasms), and number of anti-epileptic mediations (all classes)
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that researchers can make informed decisions about data 
rejection.

Briefly, each EEG underwent a 1  Hz high-pass and 
100 Hz low-pass filter, downsampling to 250 Hz, removal 
of 60 Hz line noise, then artifact detection and bad chan-
nel rejection using wavelet-enhanced independent com-
ponent analysis (ICA) and the Multiple Artifact Rejection 
Algorithm (MARA; [48]). Given the short length of 
the recording (2  min) and the use of high-density nets 
(128-channels), a subset of electrodes was included in 
this processing. Constraining the number of components 
in ICA decomposition is necessary to ensure robust and 
stable results. This is done by reducing the number of 
channels based on available EEG data length and sam-
pling rate to provide appropriate data samples for reli-
able and stable ICA decomposition [47, 49]. A total of 37 
channels were used. In addition to 10–20 electrodes, the 
following electrodes were included in processing for all 
participants: 4, 19, 13, 112, 55, 67, 77, 28, 117, 47, 98, 75, 
65, 90, 37, 87, 41, 103. Following ICA artifact detection 
and removal of bad channels, data were re-referenced 
using the average across channels, and then detrended 
to the signal mean. Processed data were segmented into 
2-second segments, and segments with retained artifact 
were rejected based on HAPPE’s amplitude and joint 
probability criteria using a 40 µV amplitude limit. Files 
were retained that met the following criteria, modeled 
after studies analyzing similar developmental popula-
tions [47, 50]: participants had 20 or more good segments 
(n = 5 excluded), > 80% good channels, mean or median 
retained artifact probability < 0.3 (n = 2 excluded), percent 
independent components rejected as artifact < 80%, and 
percent variance retained after artifact rejection > 25%.

EEG power analysis and parameterization
Using BEAPP software in MATLAB [46], power spectral 
densities for each electrode were estimated using mul-
titaper spectral estimation with three orthogonal tapers. 
The power at each electrode was calculated for each fre-
quency bin (0.5  Hz frequency resolution) for each two-
second segment, then averaged across all segments for 
that electrode and frequency bin.

The power spectra were then separated into periodic 
and aperiodic components using SpecParam v1.0.0 (also 
known as FOOOF [35, 36]) in the fixed mode (no spectral 
knee) from 2 to 55  Hz. Settings for the algorithm were 
as follows: peak width limits: 0.5–18.0; max number of 
peaks: 7; and peak threshold: 2. To evaluate the periodic 
component, the SpecParam estimated aperiodic compo-
nent was subtracted from the absolute power spectrum.

Extraction of EEG features
After parameterization into aperiodic and periodic 
spectra, features of the EEG were extracted for analysis. 

Aperiodic offset and slope were provided by SpecParam. 
Power was computed for the three spectral density curves 
(absolute, aperiodic and periodic power spectrum) using 
the integral under the curve for the following frequency 
ranges: theta (4–5 Hz), alpha (6-11 Hz), low beta (12-19 
Hz), high beta (20–29  Hz), broad beta (12–29  Hz), and 
gamma (30–44  Hz). Next, peaks were identified within 
the broad alpha and broad beta ranges by identifying, 
for each child, the local maximum within the designated 
frequency range. The power value and frequency value 
at that peak were normalized with a log10 transforma-
tion (log10(uV^2)/Hz). Based on past literature [15], two 
regions of interest (Fig S1) were analyzed for all features: 
frontal (electrodes 24, 124, 11, 28, 117, 19, 4) and poste-
rior (electrodes 70, 75, 83, 67, 77).

Statistical analyses
1. Comparison of the power spectrum in TSC to typical 
development.

To identify differences in the power spectral density 
between the TSC and TD groups across the frequency 
range (2–44 Hz) for both full spectral power and periodic 
power, cluster permutation testing (n = 1000 permuta-
tions, 2-tailed, threshold for forming a cluster p < 0.05) 
with a cluster-level significance threshold of p < 0.05 was 
implemented via the MNE software package in Python 
(v3.8.5) Jupyter Notebooks (v2.2.6).

To identify group differences in aperiodic components 
(frontal and posterior intercepts and slopes), logistic 
regressions were conducted to predict group status (TD 
vs. TSC), implemented in RStudio (4.0.3).

2. Seizures and medication use within the TSC cohort.
The TSC cohort was stratified by low (0–2),moder-

ate  (3-7), and high (8-12)   seizure severity composites 
(integrating frequency, number of medications, and 
seizure type), and by use of GABAergic medications, 
which are known to affect spectral beta power. A two-
way ANOVA was conducted to test the main effects 
and interaction of GABAergic medications and seizure 
severity on frontal beta peak. Post hoc comparisons were 
conducted and adjusted for multiple comparisons using 
Tukey’s HSD implemented in RStudio (4.0.3).

 

frontal beta peak amplitude =β 0 + β 1Seizure Severity

+ β 2GABA + β 3Seizure Severity

× GABA + ε

Results
Children with TSC show greater beta power and greater 
aperiodic offset than typically developing controls
Cluster-based permutation testing revealed that, com-
pared to age- and sex-matched typically developing con-
trols, children with TSC showed significantly greater 
absolute and periodic power in the beta range in both 
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frontal and posterior regions (Figs.  3 and 4a, Table S2; 
absolute: frontal 10.6–25.1  Hz, p = 0.011 and posterior 
9.7–31.4  Hz, p = 0.001; periodic: frontal 10.6–26.1  Hz, 
p = 0.001 and posterior 11.2–27.0  Hz, p = 0.001). As 
expected based on prior literature in typically developing 
toddlers, the TD participants on the group level exhib-
ited both a low (10–19  Hz) and high (20–29  Hz) beta 
peak [50], whereas the TSC group exhibited a single high 
amplitude beta peak around 20 Hz. In the gamma range, 
the TSC group showed diminished periodic power (fron-
tal 34.5–49.7  Hz, p = 0.002, and posterior 34.3–50.8  Hz, 
p = 0.006). We observed no clear age-related patterns (Fig 
S2), and males and females showed similar power spectra 
(Fig S3) and no significant differences in peak beta fre-
quency nor amplitude.

Based on these results, post-hoc analyses were con-
ducted to compare beta power and peak beta frequency 
between groups. It was observed from individual wave-
forms (Fig S4) that peak beta frequency often occurred 
on the cusp between low beta (12–19  Hz) and high 
beta (20–29  Hz), around 20  Hz; thus, the decision was 
made to analyze peak beta frequency across the broad 
beta range (12–29  Hz). Both frontal and posterior peak 
broad beta frequency were lower for the TSC group 
than the TD group in paired t-tests (t’s > 3.8, p’s < 0.0005: 
TSC frontal M = 20.9 Hz, posterior M = 20.5; TD frontal 
M = 24.6, posterior M = 24.1). For comparison with other 
literature, we also tested high beta 20–29 Hz and found 
significantly lower peak beta frequency for TSC than TD 
children (t’s > 5.8, p’s < 5E-6: TSC frontal M = 23.7  Hz, 
posterior M = 23.9 Hz; TD frontal M = 26.7 Hz, posterior 
M = 27.1 Hz). Of note, within the TSC group, broad beta 
peak frequency showed trends of a positive correlation 
with Mullen NVDQ (frontal: r = 0.30, p = 0.05; posterior: 
r = 0.27, p = 0.07), and significant negative correlations 
with seizure severity (frontal: r=-0.34, p = 0.02; posterior: 
r=-0.31, p = 0.03).

Association with cognition. A previous study of young 
children with TSC had found associations between Mul-
len NVDQ scores and peak alpha frequency [15]. Though 
not a primary aim of this study, we explored this pos-
sible association in our data to test the replicability of 
this finding since replication opportunities are rare in 
rare genetic syndromes. In our sample, we observed no 
significant association between Mullen NVDQ and peak 
alpha frequency (frontal r=-0.21 p = 0.17; posterior r=-
0.11 p = 0.48, uncorrected p values). Further research 
with larger samples with a narrower age range may clarify 
the association between peak alpha frequency and cogni-
tion in TSC.

Aperiodic features. The four most informative ape-
riodic variables (intercepts and slopes for frontal and 
posterior regions) were entered into a logistic regres-
sion model predicting group status (TD, TSC). The 

odds ratio generated from the logistic regression can 
be interpreted as the odds that an individual falls in the 
TSC group, rather than the TD group, given a 1-point 
change in modeled aperiodic intercept (i.e., from 0.01 to 
1.01), which has a range in this sample of -0.04 to 1.00. 
In the model, posterior intercept reflecting broadband, 
nonrhythmic neuronal firing, emerged as a strong and 
sole significant predictor of group status (Fig. 3). Specifi-
cally, when holding frontal intercept, frontal slope, and 
posterior slope constant, a 1.0 point increase in poste-
rior aperiodic intercept corresponded to a 222.9 increase 
in odds of belonging to the TSC group (OR = 222.9, 
p = 0.0037, 95% CI [7.2, 11,312.5]), corresponding to 
greater posterior broadband, nonrhymic neuronal firing 
in participants with TSC compared to matched controls. 
Aperiodic offset was not associated with GABA agonist 
use nor seizure severity (p’s > 0.2, r’s < 0.2). Of note, slope, 
which reflects the excitatory-inhibitory balance, did not 
predict group membership.

Sensitivity analyses. Results from all analyses remained 
consistent after excluding four participants with TSC 
who had brain surgery to improve their epilepsy, along 
with excluding their corresponding TD matches. Power 
spectra stratified by other potential variables of inter-
est (age bins, sex, current seizures, infantile spasms) are 
depicted in the supplement (Figures S2, S3, S5, S6).

Higher peak beta power is associated with both higher 
seizure severity, and GABA agonist use
Next, we examined the main effect of seizures on the 
power spectrum (Fig.  4a and b, S5, S6) for participants 
with TSC with available seizure severity data (n = 48 of 
49). Participants with high seizure composite scores 
showed a marked increase in frontal peak beta power 
(n = 13; M(SD) = 0.52(0.17)) compared to those with 
moderate scores (n = 23; (M(SD) = 0.28(0.16)), low scores 
(n = 12; M(SD) = 0.24(0.12)), or typically developing con-
trols (M(SD) = 0.20(0.09)). There was a significant main 
effect of seizure severity on frontal broad beta peak 
amplitude F(3, 90) = 29.28, p < 0.001, and post-hoc Tukey 
HSD tests showed a significant difference between all 
groups and the high seizure severity group (all adjusted 
p’s < 0.0005).

Since GABAergic medications are often used to man-
age epilepsy, we stratified the TSC sample by GABAer-
gic medication use (Fig.  4c, Fig S7). Medication data 
were available for all participants, and only 7 of 49 TSC 
participants were not on a GABAergic medication. 
Despite the small sample, we observed a significant 
increase in beta amplitude in participants on GABAer-
gic medications (n = 42; M(SD) = 0.38(0.19)) versus off 
(n = 7; M(SD) = 0.15(0.09)); individuals off GABAergic 
medication showed a beta peak more similar to their TD 
matches (M(SD) = 0.20(0.09)) than to other individuals 
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Fig. 3 TSC and Typical Development parameterized power spectra. TSC and TD groups showed significantly different resting power in several frequency 
ranges, denoted by an asterisk and black bar spanning the significant frequency range. In aperiodic power (middle row), the TSC group showed signifi-
cantly greater broadband nonscillatory neuronal firing than the TD group in the posterior intercept, denoted by an asterisk. No group differences were 
observed in the slope, which reflects the excitatory-inhibitory balance
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with TSC. Specifically, there was a significant main 
effect of GABA agonist medication on frontal broad beta 
peak amplitude F(2, 90) = 16.42, p < 0.001), and post-hoc 
Tukey HSD tests showed a significant difference between 

all groups and the GABA agonist group (all adjusted 
p’s < 0.00005).

Finally, individuals with high seizure scores on GAB-
Aergic medications (n = 12) showed the most elevated 

Fig. 4 Parameterized frontal periodic power spectrum stratified by seizure composite and GABAergic medication use. (A) As a group, children with TSC 
(red, n = 49) showed significantly greater peak beta power than age- and sex- matched typically developing controls (gray, n = 49). (B) When the TSC par-
ticipants were stratified by seizure severity composite, seizure severity appeared to drive the elevated peak beta power finding. The high seizure severity 
group (red, n = 13) showed significantly greater peak beta power than the moderate (orange, n = 23) and low (yellow, n = 12) seizure severity groups, 
neither of which differed significantly from typically developing controls (gray, n = 49). (C) When participants with TSC were stratified by GABAergic medi-
cation use, GABAergic medication use also appeared to drive the elevated peak beta power finding. The participants with TSC on a GABAergic medication 
(red dashed line, pink box plot, n = 42) showed significantly greater peak beta power than participants with TSC not on a GABAergic medication (solid red, 
n = 7), who were not significantly different from typically developing controls (gray, n = 49). (D) Among participants with TSC on GABAergic medication 
(left), those with high seizure severity (red, n = 12) showed the greatest peak beta power. Seizure severity and GABAergic medication use were indepen-
dently associated with elevated peak beta power; there was no significant interaction
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beta peak (Fig. 4d). As GABA agonists are prescribed for 
elevated seizure activity, it was important to determine 
whether GABA and seizure activity were independently 
associated with increased beta power. Both GABA sta-
tus and seizure severity were significantly, independently 
associated with peak beta amplitude when included in 
the same model, and the interaction was not significant 
(F(2, 90) = 2.20, p = 0.12; Fig S8).

Discussion
In resting state EEG data collected from children with 
TSC aged 12–37 months and age- and sex-matched 
typically developing children, the TSC group showed 
markedly increased beta power that appeared driven by 
individuals with high seizure activity, as well as those on 
GABAergic antiepileptic medication. Seizure activity and 
GABAergic antiepileptic medication use are confounded 
by indication, so it is notable that there was no significant 
interaction between GABAergic medication use and sei-
zure severity; in other words, seizure severity and GAB-
Aergic medication are both independently associated 
with increased beta power in the TSC group.

Beta power differences in context of seizures and GABA 
agonist use
TSC participants showed a notable elevated beta peak 
in both spectral absolute power and periodic power 
after decomposition with SpecParam. The beta peak 
was observed consistently in both frontal and posterior 
regions around 20  Hz in broad beta (12–29  Hz) and 
around 24 Hz in high beta (20–29 Hz, excluding low beta 
peaks from the average), whereas typically developing 
controls showed a peak beta frequency closer to 24 Hz in 
broad beta and 27 Hz in high beta. Increased beta peak 
power was associated with both increased seizure sever-
ity and GABA agonist use in the TSC cohort. Increases 
in beta power with GABA agonist use are consistent 
with prior reports in both humans and animal models 
[27–34]. Thus, it is likely that GABAergic medication use 
in our sample could be driving the increased beta power 
and decreased peak beta frequency, at least in part. How-
ever, in the current sample, GABA agonists alone likely 
do not explain the increased beta power and lower peak 
beta frequency observed in the TSC cohort. Surprisingly, 
seizure severity – likely reflecting excessive excitatory 
signaling – also independently positively correlated with 
increased beta power.

Prior EEG analyses in TSC have suggested dysmaturity 
based on less complexity (reduced entropy) and higher 
regularity (increased Hurst exponent) ([13, 14]). It is also 
possible that beta alterations we observe in TSC reflect 
differences in brain maturation. In a large longitudinal 
normative sample of nearly 600 children, Wilkinson et al. 
(2024) recently reported nonlinear early developmental 

changes in both low and high beta peaks. More spe-
cifically, high beta peak amplitude and frequency both 
increase during the first year of life, peaking at 12 
months, followed by a subsequent decrease in amplitude 
and downward shift in frequency. Thus, the high beta 
peak in TSC with higher amplitude and lower frequency 
could be interpreted as a sign of delayed or altered matu-
ration. This hypothesis was supported by a post-hoc neg-
ative correlation of -0.32 (uncorrected p = 0.03) between 
the Mullen NVDQ and frontal broad beta power within 
the TSC group. In addition, qualitatively we observed 
expected low and high beta peaks in the TD group, but 
a single lower frequency/high amplitude beta peak in the 
TSC group. Further longitudinal analysis could provide 
more insight into whether the 20 Hz beta peak observed 
in TSC is related to the low versus high beta peaks 
observed during the first year of life in TD infants.

Finally, it remains possible that TSC itself is charac-
terized by increased beta power and lower peak beta 
frequency. For comparison, Duplication 15q carries a 
similar EEG signature of markedly increased beta power 
and high beta peak frequency of 23  Hz reported in a 
sample with a broad age range (9 months to 14.5 years) 
[32]. Notably, epilepsy shows the opposite association 
in Dup15q compared to our TSC cohort, with epilepsy 
diagnosis predicting less high beta power in Dup15q 
[51], and greater seizure severity predicting more beta 
power in TSC. In Fragile X, unusually high beta power 
has also been observed at a peak frequency of 30 Hz in 
a cohort of 3–7 year olds [52], with beta peak amplitude 
and frequency decreasing with age suggesting that peak 
beta frequency may be an index of brain maturity [50]. In 
our current TSC cohort no age effects were observed. In 
addition, those with the lowest seizure severity or those 
without GABAergic medication exhibited periodic spec-
tra more similar to TD participants, suggesting that these 
factors may have a greater impact on beta activity than 
TSC diagnosis alone.

Outside of the beta band, permutation cluster analy-
sis of the power spectra showed differences in clusters 
that start at the upper edge of the high alpha range and 
extended into the gamma range. However, these differ-
ences are likely related to the large neighboring beta peak 
observed in TSC. The findings are consistent with Dick-
inson et al. (2019) who found no significant group dif-
ferences in relative alpha power at 12, 24, or 36 months 
in a smaller longitudinal sample (n = 23 children with 
TSC and n = 20 controls). Dickinson et al. (2019) also 
identified a trending positive association between TSC 
24-month peak alpha frequency and 36-month NVDQ 
verbal and nonverbal that only survived correction for 
multiple comparison in the posterior region. In contrast, 
in our cross-sectional sample, no significant association 
was observed between NVDQ and peak alpha frequency. 
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Further research with larger samples with a narrower age 
range may clarify the association between peak alpha fre-
quency and cognition in TSC.

Aperiodic power differences
Analysis of aperiodic power components demonstrated 
differences in aperiodic offset, but not slope. Further-
more, differences in aperiodic offset were only observed 
in posterior, but not frontal electrodes; posterior aperi-
odic offset showed no association with GABA agonist 
use nor seizure severity. Aperiodic offset is thought to 
reflect broad band firing of the network and increases in 
children with TSC could reflect differences in synaptic 
pruning or differences in maturational processes. Perhaps 
surprisingly we did not observe any differences in aperi-
odic slope between groups. As aperiodic slope is hypoth-
esized to reflect E/I balance, one might expect children 
with TSC to have a flattened, reduced slope, reflect-
ing increased excitation. Lack of differences may reflect 
countering effects of anti-seizure medications as well as 
our limited sample size.

Resting EEG as a biomarker in the context of seizures and 
medication use
EEG data for this study was collected as the baseline 
timepoint of an RCT of the behavioral intervention 
JASPER [43]. At the start of the RCT, we hypothesized 
that resting EEG spectral power might serve as a bio-
marker - either as an outcome measure, or to predict 
treatment response. These prospects could be under-
mined by the associations of increased beta oscillatory 
activity with high seizure activity and some medica-
tions (i.e., some antiepileptics, some anxiolytics). It is 
neither feasible nor ethical to control this confound by 
requiring participants with epilepsy to stop medica-
tion use during a behavioral intervention trial such as 
our JASPER RCT, as medications often provide critical 
control of seizures. This challenge is true for not only 
TSC, but also all neurodevelopmental conditions with 
epilepsy. This challenge also extends to conditions 
with co-occurring anxiety for which benzodiazepines 
– GABA agonists known to increase beta power – are 
prescribed. However, neural markers of intervention 
response are desperately needed, and EEG features 
offer great promise as EEG is tolerated more readily 
than MRI. To address this issue, one solution might 
be to avoid resting EEG biomarkers in the beta band. 
Another solution might entail requiring candidate 
resting EEG biomarkers to show a limited group-level 
correlation at baseline with medication status or sei-
zure severity, before proceeding with individual-level 
analyses of change over time. This approach would 
demonstrate that the candidate biomarkers are less 
susceptible to medication status and seizure severity 

during the course of the RCT. Accordingly, we recom-
mend that future studies of resting EEG in neurodevel-
opmental conditions of all ages collect comprehensive 
seizure and GABAergic medication data at each EEG 
data collection point, including changes in medica-
tions, so that final analyses can account for exogenous 
influences on candidate biomarkers. Another recom-
mendation is that ideally, researchers collect longitu-
dinal EEG data, beginning prior to the start of seizure 
medications. While age-related changes would need 
to be considered, neurophysiological features could be 
compared before and after medication start. Finally, 
distinguishing the effects of medications, seizures, and 
development on EEG features requires large, heterog-
enous samples. Recruiting large numbers of children 
with rare genetic disorders can be quite challenging, 
but advances in early diagnostics and increased fund-
ing for research in this area would support the recruit-
ment of more robust samples.

Limitations of this analysis include its cross-sec-
tional design across a broad age range (12–37 months), 
absence of tuber location MRI data, small sample size 
of seizure severity and medication subsamples, and 
reliance on parent-report for medication, seizure, and 
TSC diagnosis.

Conclusions
This paper adds to the current literature on resting 
EEG spectral power biomarkers in neurodevelopmen-
tal disorders by identifying common confounding vari-
ables that impact beta power (seizures, antiepileptic 
GABAergic medication use). To the TSC literature 
specifically, this paper contributes a characterization 
of resting EEG in toddlers, benchmarked against typi-
cal development. Through this careful comparison, we 
were able to identify elevated beta power in children 
with TSC, and relate it to sample characteristics (med-
ication use, increased seizure severity). Future direc-
tions include investigation of identified resting EEG 
features in relation to RCT behavioral outcomes, and 
collection of larger samples of resting EEG in individu-
als with TSC to characterize beta power and peak beta 
in subgroups of medication use and seizure severity.
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