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Abstract 

Machine learning (ML) is increasingly used to identify patterns that could predict neurodevelopmental disorders 
(NDDs), such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). One key source 
of multilevel data for ML prediction models includes population-based registers and electronic health records. These 
can contain rich information on individual and familial medical histories and socio-demographics. This review sum-
marizes studies published between 2010–2022 that used ML algorithms to develop predictive models for NDDs 
using population-based registers and electronic health records. A literature search identified 1191 articles, of which 32 
were retained. Of these, 47% developed ASD prediction models and 25% ADHD models. Classical ML methods were 
used in 82% of studies and in particular tree-based prediction models performed well. The sensitivity of the models 
was lower than 75% for most studies, while the area under the curve (AUC) was greater than 75%. The most impor-
tant predictors were patient and familial medical history and sociodemographic factors. Using private in-house 
datasets makes comparing and validating model generalizability across studies difficult. The ML model development 
and reporting guidelines were adopted only in a few recently reported studies. More work is needed to harness 
the power of data for detecting NDDs early.
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Introduction
Neurodevelopmental disorders (NDDs) are childhood 
conditions impacting cognitive development, motor 
functioning, and higher-order executive functions, such 
as emotions, language, and memory. The Diagnostic and 

Statistical Manual of Mental Disorders (DSM-5) speci-
fies that the symptoms of NDDs may be present in early 
development but not manifest fully into core diagnostic 
features till later in life [1]. NDDs are lifelong and encom-
pass multiple conditions, including autism spectrum 
disorder (ASD), attention deficit hyperactivity disorder 
(ADHD), intellectual disability (ID), communication 
disorders, and motor disorders. NDDs frequently co-
occur in individuals, and their deficit or excessive symp-
toms may overlap amongst conditions. Currently, there 
are no known biomarkers for any NDD [2, 3], and the 
diagnosis is given based on their phenotypic manifesta-
tions by trained clinicians observing an individual over 
time. The subjectivity in the diagnostic process and the 
lack of trained clinicians, especially in remote regions, 
leads to delays in diagnosis, depriving early intervention 
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opportunities. Early diagnosis of NDDs can lead to early 
interventions, improved prognosis, and treatment out-
comes [4].

Machine learning (ML) methods have the potential 
to manage the myriad of these complexities by develop-
ing robust prediction models for NDDs using various 
data [3]. If designed right, the power of prediction mod-
els comes from their generalization ability to predict 
unseen individual outcomes reliably across populations. 
The splurge in a massive amount of multimodal, high-
dimensional healthcare data warrants advanced ana-
lytical approaches for mining them for subtle patterns, 
designing prediction models, and characterizing medical 
conditions. The learning process from the training data 
can be supervised or unsupervised, and the resulting 
learned information is captured in a model. The model 
thus developed is further applied for deriving insights 
into new unseen data and should generalize well across 
populations [5]. In the supervised learning process, the 
goal is to learn a mapping between the provided input–
output label pairs, while in the unsupervised learning, in 
the absence of target labels, the aim is to identify hidden 
patterns in the data. The field of ML has made tremen-
dous progress in the last two decades in natural language 
processing (NLP), computer vision (CV), and speech 
processing domains. In addition, ML models have shown 
promising results of predictive diagnostic abilities in can-
cer [6, 7], and cardiovascular diseases [8].

In the past few decades, an increasing number of 
nationwide population-based registers and digitized elec-
tronic health records (EHRs) have been administered to 
develop national-wide healthcare systems, social ser-
vices, and research [9]. Such an ensemble of registers 
contains a large volume of rich information that can 
be exploited for developing robust and intelligent ML 
approaches to develop prediction, prognosis, and treat-
ment response models for multiple health conditions 
[10–17] The EHRs contain information such as patient’s 
medical history, clinical visits, prescribed medicines, and 
sociodemographic details that may provide insights into 
the development of conditions.

ML models have shown great promise in screening and 
diagnostic prediction of NDDs using different modalities, 
such as clinical and behavioural assessments, genetics, 
and brain imaging techniques such as Electroencepha-
lography (EEG) and Magnetic Resource Imaging (MRI) 
[3]. A common challenge with these modalities is the 
unavailability of labeled large sample sizes for building 
effective ML models. EHRs and population-based regis-
ters do not generally have this limitation and, therefore, 
could potentially have data to help construct NDD pre-
diction models. However, the lack of easy access to EHR 
data stored in unstructured formats hinders the ability to 

perform analyses more efficiently. Despite this, studies 
utilizing ML methods for processing population-based 
registers and EHRs in the context of NDDs are emerging.

In this review, we sought to identify studies employing 
ML models with EHRs and population-based registers 
for predicting NDD. Our objectives included reporting 
the variables used for prediction and assessing model 
performance across studies. Additionally, we synthe-
sized recommendations for future research based on our 
findings. We hypothesized that existing studies would 
exhibit heterogeneity in design, sample sizes, predictor 
variables, and outcome measurements. Such variability 
could challenge these models’ comprehensive conclu-
sions, generalizability, and clinical implementation. We 
provide a summary and evaluation of the current state of 
ML-based prediction models for NDD diagnosis, consid-
ering their quality and performance. We also address the 
challenges and potential avenues for the successful inte-
gration of ML in enhancing neurodevelopmental disor-
ders diagnosis. To our knowledge, this is the first review 
focused on ML models leveraging EHRs and population-
based registers for NDD prediction.

Methods
Protocol and information sources
We performed this scoping review according to the 
five-stage framework of Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses Extension for 
Scoping Reviews (PRISMA) Checklist and Explana-
tion [18–20]. We restricted the search to the articles to 
include peer-reviewed and published work between 2010 
– 2022 followed with a narrow search for the first months 
of 2023. A literature search was performed in Medline, 
Embase, Cochrane Library, Web of Science and PsycInfo 
databases. A simplified search was also done in Google 
Scholar. An information specialist from Karolinska Insti-
tutet University library assisted in our initial literature 
search to screen articles for the final review.

Search strategy and inclusion/exclusion criteria
The search strategy was developed in Medline (Ovid). 
For each search concept, the Medical Subject Headings 
(MeSH-terms) and free text terms were identified. The 
search was then translated into the other databases. No 
language restriction was applied. De-duplication was 
done using the method described by Bramer et al. [21].

Additionally, we compared DOIs of the identified 
articles as final step. After the initial searches, we 
performed a snowball search to check references and 
citations of eligible studies from the database searches 
using the tool—connectedpapers.com—and manually 
verifying the references section from selected arti-
cles in this study. A simplified search was also done 
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in Google Scholar where the first 320 records were 
screened. The last search of articles was conducted 
2022–09-27. To account for very recent published 
works, we conducted a simplified search for new arti-
cles published between Oct 2022—Mar 2023. The full 
search strategies for all databases are available in the 
Supplementary Material (Table S1—Table S5).

Our objective was to review articles that had devel-
oped prediction models for NDDs using ML meth-
ods and population-based registers, and EHRs. We 
included articles using classical ML and deep learning 
(DL) algorithms for model development. We excluded 
studies establishing associations between multiple 
factors and disease conditions. Also, we excluded 
grouping studies involving the identification of subcat-
egories or comorbidities of NDDs.

Selection of sources of evidence
The articles matching the inclusion criteria from the 
literature searches were exported into the Zotero 
citation tool. Thereafter, both authors sorted articles 
based on title, abstract, and inclusion criteria. The 
selected articles are further assessed by reviewing the 
full text of the article to match the inclusion criteria.

Data extraction
To process the selected articles for information needed 
in the review, we first extracted a table of items from 
each publication and used them to summarize the study 
design and findings. These included data items, such as 
aim, sample size, predictive variables used in the study, 
method of handling unbalanced data, sparsity, heteroge-
neity, employed ML methods, their findings, limitations, 
performance variables and the used datasets.

Results
Our search strategy resulted in 1191 records, from 
which 302 were removed in the first step as these were 
meeting abstracts or proceedings and 358 as duplicate 
records (Fig. 1). After removing 683 from the initial list 
of 1191, we were left with 508. From this, we excluded 
records that did not use medical records (n = 93), did not 
use machine learning (n = 142), review articles (n = 29), 
no NDD (n = 215), records not found (n = 4), and sys-
tem development/correspondence (n = 2). We further 
included 9 articles from other sources, 32 of which met 
the inclusion criteria and were included in this review, as 
summarized in the PRISMA flow diagram (Fig.  1). The 
included studies were conducted in 13 different coun-
tries. Most studies came from the USA (59%), followed 

Fig. 1  PRISMA flow diagram. After screening 1191 articles, 32 were retained for the review
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by Denmark (6%). There is a single study each from the 
UK, Sweden, Germany, Finland, Switzerland, Neth-
erlands, Egypt, Brazil, Israel, Thailand, and Australia 
(Fig. 2a, Table S6).

The sample sizes in the studies varied significantly 
between 50 participants and a dataset of 4.5 million sub-
jects (Table  1). Prediction models were developed for a 
single diagnosis and a combination of NDDs. Approxi-
mately 47% of included studies developed ASD pre-
diction models, 28% focused on ADHD models, and 
the remaining were individual studies for other NDDs 
(Fig. 2b, Table 1).

There were only three studies [13, 17, 27] that used 
Swedish and Danish nationwide population-based regis-
ters for the model development, and the rest of the stud-
ies used EHRs. Of the studies, 82% employed classical 
ML methods, while the remaining 18% applied DL meth-
ods (Fig. 2c, Table S7). The majority of the studies (60%) 
were published in the last three years.

The comorbid medical conditions, sociodemograph-
ics, and parent medical history were the most commonly 
used predictor variables (Fig.  2d, Table  S8). In terms of 
performance results, the AUC metric was greater than 

75% in most studies, while the sensitivity metric was less 
than 75% (Table 1, Table S9), indicating a need for further 
advancements. In the studies reviewed here, we did not 
find clear association between larger sample sizes and 
higher performance.

Input preprocessing for addressing data quality issues
The data used in studies were from population-based 
registers, EHRs or medical records (diseases, medica-
tions, lab tests, procedures, clinical notes) of patients and 
family members, and insurance claim forms which all are 
characterized by missing values, the high dimensionality 
of records, heterogeneity, imbalance case–control catego-
ries, errors, and systematic biases. Data imputation is one 
of the commonly employed methods for handling miss-
ing data. In the reviewed studies, imputation was done in 
different ways, including using the random forest-based 
methods to impute the values [24], populating the miss-
ing data with the average value for continuous variables 
and mode value for discrete variables [36], replacing 
missing values either with zeros or unknown status val-
ues [42] and use chain equations from remaining predic-
tors to fill missing values. Mikolas and colleagues filtered 

Fig. 2  Distribution of reviewed articles across multiple factors. (a) number of articles from different countries, (b) usage of categories of predictor 
variables in studies, (c) ML algorithms used in studies, and (d) multiple co-occurring NDD conditions in studies
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the features and participants with more than 20% of miss-
ing values [35], and Garcia-Argibay, et  al. [17] included 
features with less than 10% missing values.

The case–control class/category imbalance problem 
was addressed using different tools, including down-
sampling the number of controls [27] or upsampling the 
number of cases [32] by randomly generating new sam-
ples between each positive sample and its nearest neigh-
bors, employing the Synthetic Minority Over-sampling 
Technique (SMOTE) method to increase the cases [17, 
24] or to assign more weights to cases while training a 
model [34].

There are no standard ways to process multimodal data 
from population-based registers and EHRs for generating 
an effective representation. Schuler et  al. [50] proposed 
a generalized low-rank modeling framework to form effi-
cient representations. This low-rank modeling framework 
was further used for downstream clustering applications. 
The advent and success of deep neural networks for effi-
cient representation learning have led to the emergence 
of new studies to form efficient representations for EHRs 
data. Landi et  al. [51] have proposed a representation 
learning model using word embeddings, convolutional 
neural networks, and autoencoders to transform patient 
history in EHRs into a set of low-dimensional vectors. 
They evaluated the generated representation for patient 
stratification across various conditions using clustering 
methods and demonstrated the effectiveness of the repre-
sentation. Miotto et al. [52] have applied an unsupervised 
DL method using denoising autoencoders to generate a 
representation—Deep Patient—for each patient record in 
EHRs. They demonstrated the effectiveness of this repre-
sentation by developing risk prediction models for vari-
ous diseases for patients. Most studies included in this 
review have used custom methods to convert the input 
records into a multidimensional numerical vector, while 
some have grouped certain factors into features and used 
them as input to the model.

Prediction features and ML methods
The predictor variables used in included studies were 
comorbid medical conditions from ICD-9 and ICD-10 
codes, health problems, medical screening data, pre-
scribed medications of a child, parental medical histo-
ries, medications, extended family history of mental and 
non-mental health conditions, socio-demographics, hos-
pital admission/discharge, outpatient visit events, clinical 
notes and medical claims (Fig 2d, Table S8).

The predictor variables or features were processed mul-
tiple ways to generate a unique numerical representation 
for each subject before training an ML model. For exam-
ple, Onishchenko et al. [22] developed digital biomarkers 
for ASD from past medical conditions. Autism comorbid 

risk score (ACoR) was estimated in the early years of a 
child with ASD comorbidities. The score was further 
conditioned on current screening scores to reduce the 
false positive rate. A diagnostic history model using time-
series patient data across 17 disease categories was devel-
oped for each patient. Chen et al. [31] developed an ASD 
prediction model for young children at 18 mo, 24 mo, 
and 30 mo using medical claims data. They have exam-
ined all diagnosis and procedure codes of a child’s medi-
cal encounters and used Clinical Classifications Software 
(CCS) software to form different disease categories. The 
total number of encounters for each CCS category, sex, 
and encounters of emergency department visits were 
used as predictor variables for the model. Ejlskov et  al. 
[27] examined the feasibility of using extended family 
history of mental and non-mental conditions to predict 
the ASD risk. A large national Denmark cohort of medi-
cal history data of three generations of family members 
is used for developing ML models. Morbidity indicators 
across 73 disorders, including mental, cardiometabolic, 
neurologic, congenital defects, autoimmune, and asthma 
of family members, were used as predictor variables. 
Allesøe et al. [13] have employed a DL model for mental 
disorder prediction, including NDDs using nationwide 
register data, family and patient medical histories, birth-
related measurements, and genetics.

Most studies (82%) trained one or more ASD prediction 
models using classical ML methods. The most commonly 
used methods were logistic regression and random for-
ests. Onishchenko et  al. [22] used Sequence Likelihood 
Defect (SLD) to measure the deviations in the observed 
time-series diagnostic events across positive and control 
cohorts. It was shown that this approach resulted in bet-
ter performance than state-of-the-art ML algorithms. 
The proposed approach has few model parameters to 
learn, unlike conventional deep neural networks with 
a large set of parameters. Yuan et  al. [32] developed an 
ASD prediction model from medical claim forms. The 
medical claim forms are preprocessed to extract textual 
content, and natural processing techniques were applied 
to derive text features. These features were used to build 
a Support Vector Machine (SVM) classifier for ASD pre-
diction. There were nine studies utilizing DL methods. 
Tran et al. [40] investigated the feasibility of using a short 
textual description of clinical notes to predict the risk of 
future multiple mental conditions, including ADHD. The 
baseline model was developed using the SVM classifier 
and compared with deep network models, such as Con-
volutional Neural Networks (CNN) and Recurrent Neu-
ral Networks with Hierarchical Attention (ReHAN). The 
detailed list of ML algorithms used in included studies is 
presented in Table  S7. Many studies have developed an 
ensemble of models using multiple ML algorithms.
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The model evaluation methods used in studies involved 
k-fold cross-validation techniques and/or train-valid-
test split methods. The performance of the algorithms 
was reported using the commonly used metrics, such as 
sensitivity, specificity, the area under the curve (AUC), 
positive predictive value (PPV), and accuracy. Half of the 
studies have reported AUC performance greater than 
75%. While most studies have reported superior perfor-
mance in some metrics, the sensitivity results were rela-
tively low, as the majority showed a sensitivity of less than 
75%. Not all studies have reported performance results 
across all evaluation metrics in a consistent way. The 
summary of performance evaluation metrics reported in 
studies is shown in Table 1, Table S9.

ML model interpretability for feature importances 
and generalization
Model interpretability is key to healthcare problems as it 
helps identify influencing variables for decision-making 
needed by clinicians. It is worth mentioning that most of 
the studies in this review have addressed the interpret-
ability aspects in sufficient detail. The findings from the 
included studies and the dominating predictor variables 
influencing model performance varied across studies. 
For example, for ASD models, Betts et al. [16] identified 
gender, maternal age at birth, delivery analgesia, mater-
nal prenatal tobacco disorders, and low 5-min APGAR 
score as dominant risk factors for ASD. Rahman et  al. 
[24] found that the features derived from predictor vari-
ables, such as parental age and parental medications, 
contributed to a better ML model performance. These 
predictors agree with prior studies. However, they noted 
that the performance metrics varied across different ML 
models, with no one clear model outperforming all met-
rics. Ejlskov et al. [27] found that the best-performing ML 
model—extreme gradient boosting (XGB)—identified 
indicators across mental conditions (ASD, ADHD, neu-
rotic/stress disorders) and non-mental conditions (obe-
sity, hypertension, and asthma) of family members. The 
study concluded that a comprehensive family history of 
mental and non-mental conditions could better predict 
ASD than considering only the immediate family his-
tory of ASD. Hassan et al. [25] aim was to identify etio-
logical factors of ASD using subject and family medical 
histories. Among the 81 family history attributes, six of 
them—father anxiety, sibling PDD-NOS, father autism 
disorder, sibling learning disability, father development 
delay, and mother autism disorder—were highly pre-
dictive of ASD. The attributes from the subject medical 
history that were highly predictive of ASD were atypical 
language development, age at 3-word sentences, age of 
first words, disrupted sleep patterns, dietary, gastrointes-
tinal problems, allergies, low birth weight, and ADHD. 

Gender comparisons highlighted unique and overlap-
ping conditions. One of the significant findings from this 
study was that parental and sibling developmental delays 
were strongly associated with ASD. Chen et al. [31] found 
that for prediction at ages 24  months and 30  months, 
30–40 predictor variables were sufficient to achieve sta-
ble prediction performance, whereas, for early prediction 
at 18  months, the model needed 50 predictor variables. 
For prediction at age 24  months, the identified impor-
tant variables included sex, developmental and nervous 
system disorders, psychological and psychiatric services, 
respiratory system infections and symptoms, gastrointes-
tinal-related diagnosis, ear and eye infections, perinatal 
conditions, and emergency department visits. Lerthatta-
silp et al. [33] developed a logistic regression-based ASD 
prediction model. The experiments identified delayed 
speech, a history of avoiding eye contact, a history of not 
showing objects to others, poor response when the clini-
cian draws attention, and low frequency of social interac-
tion as the influencing predictor variables.

Garcia-Argibay et al. [17] developed an ADHD predic-
tion model from population-based Swedish national reg-
isters. They found that parents’ criminal history, male sex, 
relative with ADHD, number of academic subjects failed, 
and speech/learning disabilities were the top features 
contributing to the model performance. Shi et  al. [34] 
developed ADHD and LD prediction models. The main 
findings from the study were that complex ML models 
using ICD-9 codes perform well in ADHD identifica-
tion. However, they did not offer significant differences 
compared to using a simple model with a single family 
of ICD9 codes for ADHD. For LD identification, the util-
ity of clinical diagnostic codes was limited. Mikolas et al. 
[35] developed a predictive model to detect individu-
als with ADHD comorbid with psychiatric conditions in 
a population. The findings from the study were: (a) age, 
gender, and accuracy/reaction time were more critical 
than other features, and (b) The ADHD core symptoms 
reported by parents/teachers did not carry the degree of 
importance as commonly assumed. Instead, combining 
symptoms across different domains had strong predictive 
power for ADHD diagnosis. Elujide et al. [38] developed 
an ADHD prediction model and found that the factors 
influencing the model were sex, age, occupation, and 
marital status. van Dokkum et  al. [49] developed a pre-
diction model of development delay at age 4. The perina-
tal, parental, and child growth milestones of 1st two years 
were used as predictor variables. They found that sex, 
maternal educational level, pre-existing maternal obesity, 
smiling, speaking 2 to 3-word sentences, standing, and 
BMI z score at one year were features of high importance 
for the prediction model. Allesøe et al. [13] developed a 
cross-diagnostic mental disorder diagnosis prediction 
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model and found that previous mental disorders and age 
were the most important predictors for multi-diagnos-
tic prediction. In summary, the most common predic-
tor categories of NDDs across studies were patient and 
familial medical history and sociodemographic factors. 
The specific predictor variables in these categories vary 
across studies, making it harder to draw more detailed 
conclusions.

Most studies have used cross-validation and train-
validation-test techniques to report model performance. 
While these methods provide sufficient information 
about the model performance in a single dataset, model 
generalizability can be validated using multiple inde-
pendent datasets across sites and populations. For exam-
ple, Onishchenko et  al. [22] have used data from the 
Truven dataset for training models and an independent 
UCM database for validation. Lingren et  al. [29] have 
used cohorts from Boston Children’s Hospital, Cincinnati 
Children’s Hospital and Medical Center, The Children’s 
Hospital of Philadelphia, and the Vanderbilt University 
Medical Center in their model validation. The ADHD 
prediction model developed by Caye et al. [37] was vali-
dated using three external birth cohorts. Koivu et al. [42] 
developed a Down Syndrome prediction model using 
datasets from Canada and the UK for training a model 
and validating the model using an independent dataset 
from Canada. In summary, studies utilizing cohorts from 
distinct populations and sites for model validation for 
generalizability are emerging. The results of individual 
studies are summarized in Table 1.

Limitations in the included studies
While all studies reported superior performance of pro-
posed individual models, there were not many perfor-
mance comparisons across studies. There is some overlap 
of influencing predictive variables across studies; how-
ever, the variations in experimental conditions and target 
sample populations make it harder to form conclusive 
evidence. For instance, the sample set size varies from 
fifty participants to millions across studies. The risk of 
bias, either due to sex, gender, the proportion of cases vs. 
controls, target site, and populations, was not sufficiently 
discussed in most studies. More studies following stand-
ardized protocols and using common data are critical for 
reproducible research and moving toward the clinical 
utility of such models [53].

Discussion
We reviewed the current status of the application of 
ML to develop prediction models for NDDs using pop-
ulation-based registers and EHRs. More studies started 
emerging in the last few years. More recently, Engelhard 
et  al. [15] proposed an early autism prediction model 

from the EHRs data collected before age one year and 
showed its promise for integration with other screening 
tools. The predictive models of NDDs show promising 
results and open up possibilities for further detailed stud-
ies for model development and clinical adaptation. Open 
research questions and challenges need to be addressed 
before we see clinical translational value from such ML 
models.

Our analysis of the findings from the studies presented 
in this work reveals several key insights. The studies 
that achieved better performance metrics (AUC > 0.8) 
employed deep neural networks, classical tree based 
ML models and used subject-wise representation from 
past medical history for model training. This observa-
tion holds across prediction models for ASD, ADHD, 
and other neurodevelopmental disorders. For studies 
with limited dataset sizes and noticeable class imbal-
ances, the strategy to balance dataset sizes between cases 
and controls using methods, such as SMOTE, resulted in 
improved performance [17, 24]. While only a few studies 
leveraged population-based registers, they consistently 
showcased commendable ML predictive performance, 
underscoring the value of these registers in predicting 
NDDs.

Many studies use simple regression models to derive 
associations between predictor variables and outcomes. 
Such classical statistical-based association studies often 
were limited by their ability to operate on a handful of 
predictor variables and challenges with dealing with 
non-linear relationships. The outcomes from associa-
tion studies have less clinical translational value than effi-
cient predictive models on large datasets with tens and 
thousands of predictor variables [54]. Prediction models 
using DL methods show great promise toward this goal 
[55]. One of the key initial steps in using deep neural 
networks working with high-dimensional, longitudi-
nal population-based registers and EHRs is to efficiently 
learn a representation capturing the complex non-linear 
inter-relationships present in the data. There is good 
progress in successfully designing restricted Boltzmann 
machines, deep convolutional networks, recurrent neural 
networks, attention-based transformer networks, vari-
ational autoencoders, and deep feed-forward networks 
for effective representation learning [56–58]. These 
advancements can be effectively utilized for building bet-
ter prediction models. We noticed from our review here, 
that the tree based classical machine learning models 
can also be a good substitute when large sample sizes are 
available.

While most studies reviewed in this work used curated 
private EHRs datasets, only a few studies leverage popu-
lation-based registers; the private datasets prevent open 
and reproducible research, and the results reported are 
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difficult to replicate due to a lack of dataset availability, 
limiting scientific progress. There are efforts to collect, 
curate, anonymize, and publicly share population-based 
registers and EHRs datasets to advance the research 
area  [59–61]. In addition, standard protocols must be 
employed across cohorts, and a standard set of measures 
must be collected.

The methods, tools, and protocols used to collect 
population-based registers and EHRs vary significantly 
across sites and populations. Also, clinicians’ subjectiv-
ity in assigning disease codes to individuals leads to more 
inconsistency of records across sites and populations [3, 
13]. These problems result in large datasets having miss-
ing and inconsistent data for a specific set of individuals. 
To address these challenges, imputation techniques and 
representation learning methods are used to preproc-
ess data before training ML models. It is necessary to 
have well-balanced datasets across cases and controls to 
train such models. This will not be the case with medical 
records, as the proportion of cases will be significantly 
less than controls. However, a significant limitation in 
studies utilizing EHR is the missingness of data and how 
it is imputed before developing the models. Missing-
ness in EHR data can arise from various sources, includ-
ing inconsistent data entry, differences in healthcare 
practices, and patient non-compliance. Addressing the 
reasons for missing data is crucial and it was not done 
in standard manner in the reviewed articles. If the rea-
sons are not understood, an improper imputation can 
introduce biases and affect the validity of the ML mod-
els’ predictions. Further work is needed in this space to 
bring consistency in overcoming these challenges. ML 
model development and reporting results using standard 
guidelines, such as TRIPOD [62], GREMLIN [63] and 
STROBE [64] are essential.

Specific to ML model development for healthcare, 
sample sizes, hyperparameter tuning, overfitting, model 
complexity, model interpretability, and generalization are 
key challenges to be addressed carefully [55]. Recently, de 
Hond et al. [53] reviewed the current guidelines and qual-
ity criteria used in artificial intelligence-based predic-
tion models in healthcare and reported a lack of stricter 
guidelines for three phases of the predictive model pipe-
line. Based on our review, we note that not all studies 
have sufficiently discussed these training considerations. 
Also, the reporting of performance results varies across 
studies. Recently, Baker, et al. [65] observed similar vary-
ing results across studies in their systematic review on 
the applicability of machine learning in NDD prediction 
and understanding. One of the commonly used metrics 
to report the model performance is the AUC.

Translating these ML models into real-world imple-
mentations involves completing three steps [66]. Once 

the model has been successfully validated with in-house 
datasets, it needs to undergo external validations, i.e., 
testing the model performance across different sites, 
datasets, and populations for its generalizability, followed 
by implementation trials. Model interpretability is key to 
explaining the rationale for the model’s decision to assist 
clinicians in making informed decisions. Currently, not 
many DL studies have focused on addressing the inter-
pretability aspects of the model in the context of NDDs. 
In summary, more work is needed to implement ML 
models utilizing population-based registers and EHRs 
for NDDs. Future studies should focus on enabling public 
data availability for reproducible research, more stand-
ardization in data representation, experiment conditions, 
and performance reporting. The advancements in DL 
approaches and explainable AI should be explored for 
better performance and model interpretability.

Conclusion
In conclusion, this review thoroughly analyzes prior stud-
ies leveraging population-based registers and EHRs for 
ML-driven prediction of NDDs. Our systematic explo-
ration spanned data preprocessing, model selection, and 
evaluation stages. While most studies employed classical 
ML techniques, only a handful adopted deep learning. 
Nearly all delved into model interpretability, spotlighting 
key influencing factors. Notable predictive variables from 
registers and EHRs include patient and family medical 
history and sociodemographic details. However, model 
sensitivity generally lagged behind other metrics. Chal-
lenges like data sparsity, inconsistent disease coding, and 
heterogeneity often went unaddressed before model cre-
ation. Importantly, the majority of the data utilized was 
private.

A limited number of studies use these registers and 
EHRs for ML in NDDs, but these are emerging. Differing 
datasets and experimental setups hinder direct perfor-
mance comparisons between them. Future work should 
prioritize data availability, standardize data representa-
tion and performance metrics, and explore advance-
ments in deep learning and explainable AI for enhanced 
outcomes and interpretability.
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