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Abstract

the power of data for detecting NDDs early.

Machine learning (ML) is increasingly used to identify patterns that could predict neurodevelopmental disorders
(NDDs), such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). One key source
of multilevel data for ML prediction models includes population-based registers and electronic health records. These
can contain rich information on individual and familial medical histories and socio-demographics. This review sum-
marizes studies published between 2010-2022 that used ML algorithms to develop predictive models for NDDs
using population-based registers and electronic health records. A literature search identified 1191 articles, of which 32
were retained. Of these, 47% developed ASD prediction models and 25% ADHD models. Classical ML methods were
used in 82% of studies and in particular tree-based prediction models performed well. The sensitivity of the models
was lower than 75% for most studies, while the area under the curve (AUC) was greater than 75%. The most impor-
tant predictors were patient and familial medical history and sociodemographic factors. Using private in-house
datasets makes comparing and validating model generalizability across studies difficult. The ML model development
and reporting guidelines were adopted only in a few recently reported studies. More work is needed to harness
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Introduction

Neurodevelopmental disorders (NDDs) are childhood
conditions impacting cognitive development, motor
functioning, and higher-order executive functions, such
as emotions, language, and memory. The Diagnostic and
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Statistical Manual of Mental Disorders (DSM-5) speci-
fies that the symptoms of NDDs may be present in early
development but not manifest fully into core diagnostic
features till later in life [1]. NDDs are lifelong and encom-
pass multiple conditions, including autism spectrum
disorder (ASD), attention deficit hyperactivity disorder
(ADHD), intellectual disability (ID), communication
disorders, and motor disorders. NDDs frequently co-
occur in individuals, and their deficit or excessive symp-
toms may overlap amongst conditions. Currently, there
are no known biomarkers for any NDD [2, 3], and the
diagnosis is given based on their phenotypic manifesta-
tions by trained clinicians observing an individual over
time. The subjectivity in the diagnostic process and the
lack of trained clinicians, especially in remote regions,
leads to delays in diagnosis, depriving early intervention
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opportunities. Early diagnosis of NDDs can lead to early
interventions, improved prognosis, and treatment out-
comes [4].

Machine learning (ML) methods have the potential
to manage the myriad of these complexities by develop-
ing robust prediction models for NDDs using various
data [3]. If designed right, the power of prediction mod-
els comes from their generalization ability to predict
unseen individual outcomes reliably across populations.
The splurge in a massive amount of multimodal, high-
dimensional healthcare data warrants advanced ana-
lytical approaches for mining them for subtle patterns,
designing prediction models, and characterizing medical
conditions. The learning process from the training data
can be supervised or unsupervised, and the resulting
learned information is captured in a model. The model
thus developed is further applied for deriving insights
into new unseen data and should generalize well across
populations [5]. In the supervised learning process, the
goal is to learn a mapping between the provided input—
output label pairs, while in the unsupervised learning, in
the absence of target labels, the aim is to identify hidden
patterns in the data. The field of ML has made tremen-
dous progress in the last two decades in natural language
processing (NLP), computer vision (CV), and speech
processing domains. In addition, ML models have shown
promising results of predictive diagnostic abilities in can-
cer [6, 7], and cardiovascular diseases [8].

In the past few decades, an increasing number of
nationwide population-based registers and digitized elec-
tronic health records (EHRs) have been administered to
develop national-wide healthcare systems, social ser-
vices, and research [9]. Such an ensemble of registers
contains a large volume of rich information that can
be exploited for developing robust and intelligent ML
approaches to develop prediction, prognosis, and treat-
ment response models for multiple health conditions
[10-17] The EHRs contain information such as patient’s
medical history, clinical visits, prescribed medicines, and
sociodemographic details that may provide insights into
the development of conditions.

ML models have shown great promise in screening and
diagnostic prediction of NDDs using different modalities,
such as clinical and behavioural assessments, genetics,
and brain imaging techniques such as Electroencepha-
lography (EEG) and Magnetic Resource Imaging (MRI)
[3]. A common challenge with these modalities is the
unavailability of labeled large sample sizes for building
effective ML models. EHRs and population-based regis-
ters do not generally have this limitation and, therefore,
could potentially have data to help construct NDD pre-
diction models. However, the lack of easy access to EHR
data stored in unstructured formats hinders the ability to
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perform analyses more efficiently. Despite this, studies
utilizing ML methods for processing population-based
registers and EHRs in the context of NDDs are emerging.

In this review, we sought to identify studies employing
ML models with EHRs and population-based registers
for predicting NDD. Our objectives included reporting
the variables used for prediction and assessing model
performance across studies. Additionally, we synthe-
sized recommendations for future research based on our
findings. We hypothesized that existing studies would
exhibit heterogeneity in design, sample sizes, predictor
variables, and outcome measurements. Such variability
could challenge these models’ comprehensive conclu-
sions, generalizability, and clinical implementation. We
provide a summary and evaluation of the current state of
ML-based prediction models for NDD diagnosis, consid-
ering their quality and performance. We also address the
challenges and potential avenues for the successful inte-
gration of ML in enhancing neurodevelopmental disor-
ders diagnosis. To our knowledge, this is the first review
focused on ML models leveraging EHRs and population-
based registers for NDD prediction.

Methods

Protocol and information sources

We performed this scoping review according to the
five-stage framework of Preferred Reporting Items for
Systematic Reviews and Meta-Analyses Extension for
Scoping Reviews (PRISMA) Checklist and Explana-
tion [18-20]. We restricted the search to the articles to
include peer-reviewed and published work between 2010
— 2022 followed with a narrow search for the first months
of 2023. A literature search was performed in Medline,
Embase, Cochrane Library, Web of Science and PsycInfo
databases. A simplified search was also done in Google
Scholar. An information specialist from Karolinska Insti-
tutet University library assisted in our initial literature
search to screen articles for the final review.

Search strategy and inclusion/exclusion criteria
The search strategy was developed in Medline (Ovid).
For each search concept, the Medical Subject Headings
(MeSH-terms) and free text terms were identified. The
search was then translated into the other databases. No
language restriction was applied. De-duplication was
done using the method described by Bramer et al. [21].
Additionally, we compared DOIs of the identified
articles as final step. After the initial searches, we
performed a snowball search to check references and
citations of eligible studies from the database searches
using the tool—connectedpapers.com—and manually
verifying the references section from selected arti-
cles in this study. A simplified search was also done
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in Google Scholar where the first 320 records were
screened. The last search of articles was conducted
2022-09-27. To account for very recent published
works, we conducted a simplified search for new arti-
cles published between Oct 2022—Mar 2023. The full
search strategies for all databases are available in the
Supplementary Material (Table S1—Table S5).

Our objective was to review articles that had devel-
oped prediction models for NDDs using ML meth-
ods and population-based registers, and EHRs. We
included articles using classical ML and deep learning
(DL) algorithms for model development. We excluded
studies establishing associations between multiple
factors and disease conditions. Also, we excluded
grouping studies involving the identification of subcat-
egories or comorbidities of NDDs.

Selection of sources of evidence

The articles matching the inclusion criteria from the
literature searches were exported into the Zotero
citation tool. Thereafter, both authors sorted articles
based on title, abstract, and inclusion criteria. The
selected articles are further assessed by reviewing the
full text of the article to match the inclusion criteria.

Identification of new studies via databases and registers

Records identified from:
Da’tj::hs:es ((2 - :'7159)1): Records removed before screening:
»5 Embase (n _ 297) Duplicate records (n = 358)
© 3 Records marked as ineligible by automation
g WoS (n = 182) > to0ls (n 30) Y
S Gochrane (n = 89) Records removed for other reasons (n =
S Psycinfo (n = 128) 302)
Google Scholar (n = 320)
Registers (n = 0)
Records screened Records excluded
(n=531) (n=22)
=) Reports sought for retrieval Reports not retrieved
= (n =509) (n=1)
o
°
S
7}
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Data extraction

To process the selected articles for information needed
in the review, we first extracted a table of items from
each publication and used them to summarize the study
design and findings. These included data items, such as
aim, sample size, predictive variables used in the study,
method of handling unbalanced data, sparsity, heteroge-
neity, employed ML methods, their findings, limitations,
performance variables and the used datasets.

Results

Our search strategy resulted in 1191 records, from
which 302 were removed in the first step as these were
meeting abstracts or proceedings and 358 as duplicate
records (Fig. 1). After removing 683 from the initial list
of 1191, we were left with 508. From this, we excluded
records that did not use medical records (n=93), did not
use machine learning (n=142), review articles (n=29),
no NDD (n=215), records not found (n=4), and sys-
tem development/correspondence (n=2). We further
included 9 articles from other sources, 32 of which met
the inclusion criteria and were included in this review, as
summarized in the PRISMA flow diagram (Fig. 1). The
included studies were conducted in 13 different coun-
tries. Most studies came from the USA (59%), followed

Identification of new studies via other methods

Records identified from:
Websites (n = 3)
Organisations (n = 0)
Citation searching (n = 6)

\/
Reports sought for retrieval
(n=9)

Reports not retrieved
(n=0)

Reports excluded:
No medical records (n = 93)
No machine learning (n = 142)
Review articles (n = 29)
No NDD (n = 215)
Notfound (n = 4)
System development / correspondence (n = 2)

Reports assessed for eligibility
(n =508)

v
Reports assessed for eligibility
(n=9)

Reports excluded:

> 0(n=0)

New studies included in review
(n=23)

Included

Reports of new included studies
(n=9)

Fig. 1 PRISMA flow diagram. After screening 1191 articles, 32 were retained for the review
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by Denmark (6%). There is a single study each from the
UK, Sweden, Germany, Finland, Switzerland, Neth-
erlands, Egypt, Brazil, Israel, Thailand, and Australia
(Fig. 2a, Table S6).

The sample sizes in the studies varied significantly
between 50 participants and a dataset of 4.5 million sub-
jects (Table 1). Prediction models were developed for a
single diagnosis and a combination of NDDs. Approxi-
mately 47% of included studies developed ASD pre-
diction models, 28% focused on ADHD models, and
the remaining were individual studies for other NDDs
(Fig. 2b, Table 1).

There were only three studies [13, 17, 27] that used
Swedish and Danish nationwide population-based regis-
ters for the model development, and the rest of the stud-
ies used EHRs. Of the studies, 82% employed classical
ML methods, while the remaining 18% applied DL meth-
ods (Fig. 2c, Table S7). The majority of the studies (60%)
were published in the last three years.

The comorbid medical conditions, sociodemograph-
ics, and parent medical history were the most commonly
used predictor variables (Fig. 2d, Table S8). In terms of
performance results, the AUC metric was greater than

Predictor Variables

Long Short-Term Memory [DL]
Convolutional Neural Networks [DL]
K-Nearest Neighbour

Support Vector Machines

Gradient Boosting

Decision Trees

Artificial Neural Network [DL]

ML Algorithms

Logistic Regression

Random Forests

Overlapped studies

Parental and familial medical history
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75% in most studies, while the sensitivity metric was less
than 75% (Table 1, Table S9), indicating a need for further
advancements. In the studies reviewed here, we did not
find clear association between larger sample sizes and
higher performance.

Input preprocessing for addressing data quality issues

The data used in studies were from population-based
registers, EHRs or medical records (diseases, medica-
tions, lab tests, procedures, clinical notes) of patients and
family members, and insurance claim forms which all are
characterized by missing values, the high dimensionality
of records, heterogeneity, imbalance case—control catego-
ries, errors, and systematic biases. Data imputation is one
of the commonly employed methods for handling miss-
ing data. In the reviewed studies, imputation was done in
different ways, including using the random forest-based
methods to impute the values [24], populating the miss-
ing data with the average value for continuous variables
and mode value for discrete variables [36], replacing
missing values either with zeros or unknown status val-
ues [42] and use chain equations from remaining predic-
tors to fill missing values. Mikolas and colleagues filtered

Medical claims

Clinical notes

Socio-demographics

Comorbid medical conditions

o
o
ny
o

Number of studies

Learning disability
Intellectual Disability
Fragile X

Down syndrome
Developmental Delay
Communication impairment
Cognitive & motor development
Mental disorder
Developmental stuttering
ADHD

ASD

o
o
=
&

Overlapped studies

Fig. 2 Distribution of reviewed articles across multiple factors. (@) number of articles from different countries, (b) usage of categories of predictor
variables in studies, (c) ML algorithms used in studies, and (d) multiple co-occurring NDD conditions in studies
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the features and participants with more than 20% of miss-
ing values [35], and Garcia-Argibay, et al. [17] included
features with less than 10% missing values.

The case—control class/category imbalance problem
was addressed using different tools, including down-
sampling the number of controls [27] or upsampling the
number of cases [32] by randomly generating new sam-
ples between each positive sample and its nearest neigh-
bors, employing the Synthetic Minority Over-sampling
Technique (SMOTE) method to increase the cases [17,
24] or to assign more weights to cases while training a
model [34].

There are no standard ways to process multimodal data
from population-based registers and EHRs for generating
an effective representation. Schuler et al. [50] proposed
a generalized low-rank modeling framework to form effi-
cient representations. This low-rank modeling framework
was further used for downstream clustering applications.
The advent and success of deep neural networks for effi-
cient representation learning have led to the emergence
of new studies to form efficient representations for EHRs
data. Landi et al. [51] have proposed a representation
learning model using word embeddings, convolutional
neural networks, and autoencoders to transform patient
history in EHRs into a set of low-dimensional vectors.
They evaluated the generated representation for patient
stratification across various conditions using clustering
methods and demonstrated the effectiveness of the repre-
sentation. Miotto et al. [52] have applied an unsupervised
DL method using denoising autoencoders to generate a
representation—Deep Patient—for each patient record in
EHRs. They demonstrated the effectiveness of this repre-
sentation by developing risk prediction models for vari-
ous diseases for patients. Most studies included in this
review have used custom methods to convert the input
records into a multidimensional numerical vector, while
some have grouped certain factors into features and used
them as input to the model.

Prediction features and ML methods

The predictor variables used in included studies were
comorbid medical conditions from ICD-9 and ICD-10
codes, health problems, medical screening data, pre-
scribed medications of a child, parental medical histo-
ries, medications, extended family history of mental and
non-mental health conditions, socio-demographics, hos-
pital admission/discharge, outpatient visit events, clinical
notes and medical claims (Fig 2d, Table S8).

The predictor variables or features were processed mul-
tiple ways to generate a unique numerical representation
for each subject before training an ML model. For exam-
ple, Onishchenko et al. [22] developed digital biomarkers
for ASD from past medical conditions. Autism comorbid
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risk score (ACoR) was estimated in the early years of a
child with ASD comorbidities. The score was further
conditioned on current screening scores to reduce the
false positive rate. A diagnostic history model using time-
series patient data across 17 disease categories was devel-
oped for each patient. Chen et al. [31] developed an ASD
prediction model for young children at 18 mo, 24 mo,
and 30 mo using medical claims data. They have exam-
ined all diagnosis and procedure codes of a child’s medi-
cal encounters and used Clinical Classifications Software
(CCS) software to form different disease categories. The
total number of encounters for each CCS category, sex,
and encounters of emergency department visits were
used as predictor variables for the model. Ejlskov et al.
[27] examined the feasibility of using extended family
history of mental and non-mental conditions to predict
the ASD risk. A large national Denmark cohort of medi-
cal history data of three generations of family members
is used for developing ML models. Morbidity indicators
across 73 disorders, including mental, cardiometabolic,
neurologic, congenital defects, autoimmune, and asthma
of family members, were used as predictor variables.
Allesge et al. [13] have employed a DL model for mental
disorder prediction, including NDDs using nationwide
register data, family and patient medical histories, birth-
related measurements, and genetics.

Most studies (82%) trained one or more ASD prediction
models using classical ML methods. The most commonly
used methods were logistic regression and random for-
ests. Onishchenko et al. [22] used Sequence Likelihood
Defect (SLD) to measure the deviations in the observed
time-series diagnostic events across positive and control
cohorts. It was shown that this approach resulted in bet-
ter performance than state-of-the-art ML algorithms.
The proposed approach has few model parameters to
learn, unlike conventional deep neural networks with
a large set of parameters. Yuan et al. [32] developed an
ASD prediction model from medical claim forms. The
medical claim forms are preprocessed to extract textual
content, and natural processing techniques were applied
to derive text features. These features were used to build
a Support Vector Machine (SVM) classifier for ASD pre-
diction. There were nine studies utilizing DL methods.
Tran et al. [40] investigated the feasibility of using a short
textual description of clinical notes to predict the risk of
future multiple mental conditions, including ADHD. The
baseline model was developed using the SVM classifier
and compared with deep network models, such as Con-
volutional Neural Networks (CNN) and Recurrent Neu-
ral Networks with Hierarchical Attention (ReHAN). The
detailed list of ML algorithms used in included studies is
presented in Table S7. Many studies have developed an
ensemble of models using multiple ML algorithms.
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The model evaluation methods used in studies involved
k-fold cross-validation techniques and/or train-valid-
test split methods. The performance of the algorithms
was reported using the commonly used metrics, such as
sensitivity, specificity, the area under the curve (AUC),
positive predictive value (PPV), and accuracy. Half of the
studies have reported AUC performance greater than
75%. While most studies have reported superior perfor-
mance in some metrics, the sensitivity results were rela-
tively low, as the majority showed a sensitivity of less than
75%. Not all studies have reported performance results
across all evaluation metrics in a consistent way. The
summary of performance evaluation metrics reported in
studies is shown in Table 1, Table S9.

ML model interpretability for feature importances

and generalization

Model interpretability is key to healthcare problems as it
helps identify influencing variables for decision-making
needed by clinicians. It is worth mentioning that most of
the studies in this review have addressed the interpret-
ability aspects in sufficient detail. The findings from the
included studies and the dominating predictor variables
influencing model performance varied across studies.
For example, for ASD models, Betts et al. [16] identified
gender, maternal age at birth, delivery analgesia, mater-
nal prenatal tobacco disorders, and low 5-min APGAR
score as dominant risk factors for ASD. Rahman et al.
[24] found that the features derived from predictor vari-
ables, such as parental age and parental medications,
contributed to a better ML model performance. These
predictors agree with prior studies. However, they noted
that the performance metrics varied across different ML
models, with no one clear model outperforming all met-
rics. Ejlskov et al. [27] found that the best-performing ML
model—extreme gradient boosting (XGB)—identified
indicators across mental conditions (ASD, ADHD, neu-
rotic/stress disorders) and non-mental conditions (obe-
sity, hypertension, and asthma) of family members. The
study concluded that a comprehensive family history of
mental and non-mental conditions could better predict
ASD than considering only the immediate family his-
tory of ASD. Hassan et al. [25] aim was to identify etio-
logical factors of ASD using subject and family medical
histories. Among the 81 family history attributes, six of
them—father anxiety, sibling PDD-NOS, father autism
disorder, sibling learning disability, father development
delay, and mother autism disorder—were highly pre-
dictive of ASD. The attributes from the subject medical
history that were highly predictive of ASD were atypical
language development, age at 3-word sentences, age of
first words, disrupted sleep patterns, dietary, gastrointes-
tinal problems, allergies, low birth weight, and ADHD.
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Gender comparisons highlighted unique and overlap-
ping conditions. One of the significant findings from this
study was that parental and sibling developmental delays
were strongly associated with ASD. Chen et al. [31] found
that for prediction at ages 24 months and 30 months,
30-40 predictor variables were sufficient to achieve sta-
ble prediction performance, whereas, for early prediction
at 18 months, the model needed 50 predictor variables.
For prediction at age 24 months, the identified impor-
tant variables included sex, developmental and nervous
system disorders, psychological and psychiatric services,
respiratory system infections and symptoms, gastrointes-
tinal-related diagnosis, ear and eye infections, perinatal
conditions, and emergency department visits. Lerthatta-
silp et al. [33] developed a logistic regression-based ASD
prediction model. The experiments identified delayed
speech, a history of avoiding eye contact, a history of not
showing objects to others, poor response when the clini-
cian draws attention, and low frequency of social interac-
tion as the influencing predictor variables.
Garcia-Argibay et al. [17] developed an ADHD predic-
tion model from population-based Swedish national reg-
isters. They found that parents’ criminal history, male sex,
relative with ADHD, number of academic subjects failed,
and speech/learning disabilities were the top features
contributing to the model performance. Shi et al. [34]
developed ADHD and LD prediction models. The main
findings from the study were that complex ML models
using ICD-9 codes perform well in ADHD identifica-
tion. However, they did not offer significant differences
compared to using a simple model with a single family
of ICD9 codes for ADHD. For LD identification, the util-
ity of clinical diagnostic codes was limited. Mikolas et al.
[35] developed a predictive model to detect individu-
als with ADHD comorbid with psychiatric conditions in
a population. The findings from the study were: (a) age,
gender, and accuracy/reaction time were more critical
than other features, and (b) The ADHD core symptoms
reported by parents/teachers did not carry the degree of
importance as commonly assumed. Instead, combining
symptoms across different domains had strong predictive
power for ADHD diagnosis. Elujide et al. [38] developed
an ADHD prediction model and found that the factors
influencing the model were sex, age, occupation, and
marital status. van Dokkum et al. [49] developed a pre-
diction model of development delay at age 4. The perina-
tal, parental, and child growth milestones of 1st two years
were used as predictor variables. They found that sex,
maternal educational level, pre-existing maternal obesity,
smiling, speaking 2 to 3-word sentences, standing, and
BMI z score at one year were features of high importance
for the prediction model. Allesge et al. [13] developed a
cross-diagnostic mental disorder diagnosis prediction
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model and found that previous mental disorders and age
were the most important predictors for multi-diagnos-
tic prediction. In summary, the most common predic-
tor categories of NDDs across studies were patient and
familial medical history and sociodemographic factors.
The specific predictor variables in these categories vary
across studies, making it harder to draw more detailed
conclusions.

Most studies have used cross-validation and train-
validation-test techniques to report model performance.
While these methods provide sufficient information
about the model performance in a single dataset, model
generalizability can be validated using multiple inde-
pendent datasets across sites and populations. For exam-
ple, Onishchenko et al. [22] have used data from the
Truven dataset for training models and an independent
UCM database for validation. Lingren et al. [29] have
used cohorts from Boston Children’s Hospital, Cincinnati
Children’s Hospital and Medical Center, The Children’s
Hospital of Philadelphia, and the Vanderbilt University
Medical Center in their model validation. The ADHD
prediction model developed by Caye et al. [37] was vali-
dated using three external birth cohorts. Koivu et al. [42]
developed a Down Syndrome prediction model using
datasets from Canada and the UK for training a model
and validating the model using an independent dataset
from Canada. In summary, studies utilizing cohorts from
distinct populations and sites for model validation for
generalizability are emerging. The results of individual
studies are summarized in Table 1.

Limitations in the included studies

While all studies reported superior performance of pro-
posed individual models, there were not many perfor-
mance comparisons across studies. There is some overlap
of influencing predictive variables across studies; how-
ever, the variations in experimental conditions and target
sample populations make it harder to form conclusive
evidence. For instance, the sample set size varies from
fifty participants to millions across studies. The risk of
bias, either due to sex, gender, the proportion of cases vs.
controls, target site, and populations, was not sufficiently
discussed in most studies. More studies following stand-
ardized protocols and using common data are critical for
reproducible research and moving toward the clinical
utility of such models [53].

Discussion

We reviewed the current status of the application of
ML to develop prediction models for NDDs using pop-
ulation-based registers and EHRs. More studies started
emerging in the last few years. More recently, Engelhard
et al. [15] proposed an early autism prediction model
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from the EHRs data collected before age one year and
showed its promise for integration with other screening
tools. The predictive models of NDDs show promising
results and open up possibilities for further detailed stud-
ies for model development and clinical adaptation. Open
research questions and challenges need to be addressed
before we see clinical translational value from such ML
models.

Our analysis of the findings from the studies presented
in this work reveals several key insights. The studies
that achieved better performance metrics (AUC>0.8)
employed deep neural networks, classical tree based
ML models and used subject-wise representation from
past medical history for model training. This observa-
tion holds across prediction models for ASD, ADHD,
and other neurodevelopmental disorders. For studies
with limited dataset sizes and noticeable class imbal-
ances, the strategy to balance dataset sizes between cases
and controls using methods, such as SMOTE, resulted in
improved performance [17, 24]. While only a few studies
leveraged population-based registers, they consistently
showcased commendable ML predictive performance,
underscoring the value of these registers in predicting
NDDs.

Many studies use simple regression models to derive
associations between predictor variables and outcomes.
Such classical statistical-based association studies often
were limited by their ability to operate on a handful of
predictor variables and challenges with dealing with
non-linear relationships. The outcomes from associa-
tion studies have less clinical translational value than effi-
cient predictive models on large datasets with tens and
thousands of predictor variables [54]. Prediction models
using DL methods show great promise toward this goal
[55]. One of the key initial steps in using deep neural
networks working with high-dimensional, longitudi-
nal population-based registers and EHRs is to efficiently
learn a representation capturing the complex non-linear
inter-relationships present in the data. There is good
progress in successfully designing restricted Boltzmann
machines, deep convolutional networks, recurrent neural
networks, attention-based transformer networks, vari-
ational autoencoders, and deep feed-forward networks
for effective representation learning [56—58]. These
advancements can be effectively utilized for building bet-
ter prediction models. We noticed from our review here,
that the tree based classical machine learning models
can also be a good substitute when large sample sizes are
available.

While most studies reviewed in this work used curated
private EHRs datasets, only a few studies leverage popu-
lation-based registers; the private datasets prevent open
and reproducible research, and the results reported are
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difficult to replicate due to a lack of dataset availability,
limiting scientific progress. There are efforts to collect,
curate, anonymize, and publicly share population-based
registers and EHRs datasets to advance the research
area [59-61]. In addition, standard protocols must be
employed across cohorts, and a standard set of measures
must be collected.

The methods, tools, and protocols used to collect
population-based registers and EHRs vary significantly
across sites and populations. Also, clinicians’ subjectiv-
ity in assigning disease codes to individuals leads to more
inconsistency of records across sites and populations [3,
13]. These problems result in large datasets having miss-
ing and inconsistent data for a specific set of individuals.
To address these challenges, imputation techniques and
representation learning methods are used to preproc-
ess data before training ML models. It is necessary to
have well-balanced datasets across cases and controls to
train such models. This will not be the case with medical
records, as the proportion of cases will be significantly
less than controls. However, a significant limitation in
studies utilizing EHR is the missingness of data and how
it is imputed before developing the models. Missing-
ness in EHR data can arise from various sources, includ-
ing inconsistent data entry, differences in healthcare
practices, and patient non-compliance. Addressing the
reasons for missing data is crucial and it was not done
in standard manner in the reviewed articles. If the rea-
sons are not understood, an improper imputation can
introduce biases and affect the validity of the ML mod-
els’ predictions. Further work is needed in this space to
bring consistency in overcoming these challenges. ML
model development and reporting results using standard
guidelines, such as TRIPOD [62], GREMLIN [63] and
STROBE [64] are essential.

Specific to ML model development for healthcare,
sample sizes, hyperparameter tuning, overfitting, model
complexity, model interpretability, and generalization are
key challenges to be addressed carefully [55]. Recently, de
Hond et al. [53] reviewed the current guidelines and qual-
ity criteria used in artificial intelligence-based predic-
tion models in healthcare and reported a lack of stricter
guidelines for three phases of the predictive model pipe-
line. Based on our review, we note that not all studies
have sufficiently discussed these training considerations.
Also, the reporting of performance results varies across
studies. Recently, Baker, et al. [65] observed similar vary-
ing results across studies in their systematic review on
the applicability of machine learning in NDD prediction
and understanding. One of the commonly used metrics
to report the model performance is the AUC.

Translating these ML models into real-world imple-
mentations involves completing three steps [66]. Once
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the model has been successfully validated with in-house
datasets, it needs to undergo external validations, i.e.,
testing the model performance across different sites,
datasets, and populations for its generalizability, followed
by implementation trials. Model interpretability is key to
explaining the rationale for the model’s decision to assist
clinicians in making informed decisions. Currently, not
many DL studies have focused on addressing the inter-
pretability aspects of the model in the context of NDDs.
In summary, more work is needed to implement ML
models utilizing population-based registers and EHRs
for NDDs. Future studies should focus on enabling public
data availability for reproducible research, more stand-
ardization in data representation, experiment conditions,
and performance reporting. The advancements in DL
approaches and explainable AI should be explored for
better performance and model interpretability.

Conclusion

In conclusion, this review thoroughly analyzes prior stud-
ies leveraging population-based registers and EHRs for
ML-driven prediction of NDDs. Our systematic explo-
ration spanned data preprocessing, model selection, and
evaluation stages. While most studies employed classical
ML techniques, only a handful adopted deep learning.
Nearly all delved into model interpretability, spotlighting
key influencing factors. Notable predictive variables from
registers and EHRs include patient and family medical
history and sociodemographic details. However, model
sensitivity generally lagged behind other metrics. Chal-
lenges like data sparsity, inconsistent disease coding, and
heterogeneity often went unaddressed before model cre-
ation. Importantly, the majority of the data utilized was
private.

A limited number of studies use these registers and
EHRs for ML in NDDs, but these are emerging. Differing
datasets and experimental setups hinder direct perfor-
mance comparisons between them. Future work should
prioritize data availability, standardize data representa-
tion and performance metrics, and explore advance-
ments in deep learning and explainable Al for enhanced
outcomes and interpretability.
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