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Abstract 

Background: Although survival rates for infants born extremely preterm (gestation < 28 weeks) have improved 
significantly in recent decades, neurodevelopmental impairment remains a major concern. Children born extremely 
preterm remain at high risk for cognitive impairment from early childhood to adulthood. However, there is limited 
evidence on genetic factors associated with cognitive impairment in this population.

Methods: First, we used a latent profile analysis (LPA) approach to characterize neurocognitive function at age 10 
for children born extremely preterm. Children were classified into two groups: (1) no or low cognitive impairment, 
and (2) moderate-to-severe cognitive impairment. Second, we performed TOPMed-based genotype imputation on 
samples with genotype array data (n = 528). Third, we then conducted a genome-wide association study (GWAS) for 
LPA-inferred cognitive impairment. Finally, computational analysis was conducted to explore potential mechanisms 
underlying the variant x LPA association.

Results: We identified two loci reaching genome-wide significance (p value < 5e-8): TEA domain transcription factor 
4 (TEAD4 at rs11829294, p value = 2.40e-8) and syntaxin 18 (STX18 at rs79453226, p value = 1.91e-8). Integrative analy-
sis with brain expression quantitative trait loci (eQTL), chromatin conformation, and epigenomic annotations suggests 
tetraspanin 9 (TSPAN9) and protein arginine methyltransferase 8 (PRMT8) as potential functional genes underlying the 
GWAS signal at the TEAD4 locus.

Conclusions: We conducted a novel computational analysis by utilizing an LPA-inferred phenotype with genet-
ics data for the first time. This study suggests that rs11829294 and its LD buddies have potential regulatory roles on 
genes that could impact neurocognitive impairment for extreme preterm born children.
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Background
Extreme prematurity (birth < 28 weeks of gestation) 
remains one of the leading causes of neonatal morbidity 
and mortality in the USA [1]. Although survival rates for 
infants born extremely preterm have improved dramati-
cally in recent decades, children born extremely preterm 
remain at higher risk for cognitive impairment, with 
lower average general intelligence and executive function 
deficit [2–6] and 9-fold higher risk of severe cognitive 
impairment compared to children born full-term [7–13]. 
Adverse neurodevelopmental outcomes, such as cogni-
tive impairment, affect ~ 1 million preterm infants born 
each year [14] and may persist through adulthood [15–
18]. Although cognitive impairment is not always severe, 
even mild deficits can have substantial impact, resulting 
in a spectrum of outcomes from difficulties in school to 
inability to lead an independent adult life [19]. Specific 
problems can include deficits in executive function, lan-
guage, learning and memory, attention, perceptual-motor 
function, and social cognition [3, 6, 20, 21], which nega-
tively affect well-being [19]. Cognitive impairment has 
life-long effects on quality of life, with significant familial 
and social capital costs. Although precise data are limited 
[22], lifetime costs collectively for children born in 2000 
with intellectual disability alone are estimated at $51.2 
billion [23].

Despite substantial research efforts to understand neu-
rodevelopment outcomes, we know remarkably little 
about genetic factors and molecular mechanisms influ-
encing cognitive function in preterm children. Previous 
genetic studies have discovered hundreds of genetic vari-
ants that can predispose children to neurodevelopmen-
tal disorders including autism spectrum disorder [24], 
attention deficit disorder with hyperactivity [25], intel-
lectual disability [26, 27], specific language impairment 
[28], specific learning disorders [29], and childhood onset 
schizophrenia [30]. Some genetic studies have evaluated 
genetic risk factors for neurodevelopmental outcomes 
for preterm children or children with low birth weight 
[31–36]. MAOA was found to be associated with mental 
development throughout early childhood among preterm 
children [31]. A variant rs4074134 of BDNF, and a rare 
insertion/deletion in the intron region of SLC6A4 were 
significant predictors of cognitive performance at school 
age in a study of genetic risk factors for poor cognitive 
development in children with low birth weight [36]. 
With preterm infants from a randomized controlled trial 
(RCT) examining antenatal exposure to corticosteroids, 

Clark et  al. found variants of IL1B, IL4R, and IL6 asso-
ciated with lower scores on the Bayley’s Scales of Infant 
Development and developmental delay at age 2 [34], 
and Costantine et al. [33] found that variants of VIP and 
GRIN3A were associated with cerebral palsy. A COMT 
variant was associated with reduced corpus callosum size 
in adults with history of preterm birth [32].

However, previous studies do not explain the pathways 
through which these variants or genes might influence 
the risk of poor cognitive outcomes, and few genome-
wide association studies (GWAS) examined the genomic 
regions associated with cognitive function among chil-
dren born extremely preterm. Therefore, identifying 
genetic factors that are associated with children’s cogni-
tive function and understanding related mechanisms are 
necessary to develop earlier screening assessments and 
effective precision interventions and understand why 
some preterm children of the same gestational age do 
worse than others. To advance along these directions, we 
utilized samples from the extremely low gestational age 
newborns (ELGAN) cohort [37], the largest US-based 
study of children born extremely preterm, to identify 
genetic factors associated with cognitive impairment 
at age 10 years. Finally, integrative analysis with brain 
expression quantitative trait loci (eQTL) and chroma-
tin interactome data was performed to identify poten-
tial causal variants and functional genes underlying the 
GWAS associations.

Methods
Study participants
ELGAN is a multicenter cohort study originally designed 
to identify exposures increasing risk of structural 
and functional neurologic disorders in children born 
extremely preterm [37]. A total of 1506 infants born 
before the 28th week of gestation and 1249 mothers were 
enrolled during the years 2002–2004. Study participants 
were enrolled at 14 hospitals in the United States to 
achieve a large enough sample size and generalizability. 
The enrollment and consent procedures were approved 
by the individual institutional review boards. At the age 
of 10 years, 889 of the surviving children returned for 
follow up (ELGAN2, 92% of the 966 who were recruited 
for this phase of the ELGAN Study) and were assessed 
for cognition capacity, learning abilities, and impair-
ments in executive function [7]. Of these children, 528 
had genotype data available for analysis and thus con-
stitute the sample size of this paper. Table 1 summarizes 
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demographic information for the ELGAN2 cohort and 
the ELGAN2 subset with genetic data (n = 528) we used 
in our analysis.

Cognitive function at age 10 years
Cognitive function at age 10 years was assessed with 
latent profile analysis (LPA) [38], which empirically iden-
tifies subgroups of children who share similar profiles on 
a set of measures. The LPA included 9 cognitive measures 
including verbal and nonverbal intelligence quotient (IQ) 
and several measures of executive function (EF). IQ was 
assessed with the School-Age Differential Ability Scales–
II (DAS-II) Verbal and Nonverbal Reasoning scales. EF 
was assessed with two subtests from the DAS-II and five 
subtests from the Developmental NEuroPSYchological 

Assessment-II (NEPSY-II). Working memory was evalu-
ated with the DAS-II Recall of Digits Backwards and 
Recall Sequential Order test. The NEPSY-II Auditory 
Attention and Auditory Response Set, Animal Sorting 
Inhibition, and Inhibition Switching subtests were uti-
lized to examine auditory attention and set switching, 
concept generation and mental flexibility, and simple 
inhibition and inhibition shifting, respectively [7]. It has 
been shown that characterizing cognitive function using 
measures of executive function in addition to IQ better 
discriminates the academic performance and educational 
needs of children born extremely preterm [38]. LPA clas-
sifies subjects who share a similar pattern of scores on 
the measured variables, while maximizing the difference 
in scoring patterns across distinct profiles [39]. It assigns 
subjects into a finite number of profiles by identifying 
the most likely model that describes the heterogeneity of 
data, which is known as finite mixture models.

To determine the optimal number of profiles, LPA was 
fit to the data, and Bayesian information criteria (BIC) 
[40], sample-size-adjusted Bayesian information criteria 
(SSABIC) [41], and Lo–Mendell–Rubin-adjusted (LMR) 
likelihood ratio test [42] were used to assess model fit. 
Children were categorized by their most likely latent 
profile for further analysis. In this sample, a four-profile 
model provided the best fit for the data [38]. For our 
analysis, we used a binary classification that grouped 
participants into two previously validated distinct profile 
groups (LPAx) [38, 43]: no or low cognitive impairment 
and moderate-to-severe cognitive impairment.

Genotype data
Genomic DNA was isolated from umbilical cords and 
genotyping was performed using Illumina 1 Million 
Quad (Illumina Inc, San Diego, California). This work 
was done as part of the candidate gene analysis of severe 
intraventricular hemorrhage (IVH) in preterm born 
infants [44], where infants with birth weights 500–1250 g 
and severe grades IVH and neonates with normal cranial 
ultrasounds were enrolled prospectively at 24 universi-
ties. A subset of ELGAN participants were provided as 
additional samples along with samples from a few other 
studies in the IVH study [44].

We performed variant level and sample level quality 
control (QC) on genotype data. For variant level QC, we 
excluded variants with call rate < 90% or minor allele fre-
quency (MAF) < 1%. For sample level QC, we excluded 
samples with missing rate > 10%. These resulted in 
700,845 SNPs and 528 samples using plink v.1.90 [45, 46].

Genotype imputation
Starting with the quality controlled (QCed) genotype 
data, we used the Michigan imputation server [47] for 

Table 1 Participant characteristics of the ELGAN2 subset and 
ELGAN2 cohort

Variable name ELGAN2 subset (N 
= 528)

ELGAN2 (N = 889)

n (% or SD) n (% or SD)

Infant sex

 Male 274 (51.9%) 455 (51.2%)

 Female 254 (48.1%) 434 (48.8%)

Cognitive impairment

 No/Low 390 (73.9%) 660 (74.2%)

 Moderate/Severe 138 (26.1%) 214 (24.1%)

 Not reported 0 15 (1.7%)

Gestational age 26.1 (1.27) 26.1 (1.28)

Maternal education

 ≤ 12 years 205 (38.8%) 355 (39.9%)

 13–15 years 119 (22.5%) 202 (22.7%)

 16+ years 204 (38.6%) 306 (34.4%)

 Not reported 0 26 (2.9%)

Maternal smoking

 Yes 128 (24.2%) 215 (24.2%)

 No 400 (75.8%) 655 (73.7%)

 Not reported 0 19 (2.1%)

Race

 White 342 (64.8%) 554 (62.3%)

 Black 133 (25.2%) 227 (25.5%)

 Other 53 (10.0%) 98 (11.0%)

 Not reported 0 10 (1.1%)

Public insurance

 Yes 167 (31.6%) 307 (34.5%)

 No 361 (68.4%) 568 (63.9%)

 Not reported 0 14 (1.6%)

Multiple births

 Yes 189 (35.8%) 313 (35.2%)

 No 339 (64.2%) 576 (64.8%)
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phasing and imputation using TOPMed freeze 5 [48] 
as the reference panel. Specifically, Eagle [49] was used 
for phasing and Minimac4 [50, 51] was used for impu-
tation. We performed strand matching by dropping 
ambiguous (i.e., A/T or C/G) SNPs and by flipping non-
ambiguous SNPs that were initially in − strand when 
compared to alleles in the + strand observed in the 
TOPMed freeze 5 reference panel. Genotype data was 
lifted over to genome build hg38. In total, we obtained 
~ 34 million well imputed variants, with 5.5 million 
variants having MAF > 5%, 10.5 million variants hav-
ing MAF > 1%, and 17.4 million variants having MAF 
> 0.5%. Well imputed variants were defined by having 
Rsq > 0.8, where Rsq is the estimated imputation qual-
ity metric [50, 51]. To evaluate the imputation accuracy, 
we randomly selected 5% of the genotyped variants 
on chromosome 1 and performed genotype imputa-
tion with the rest 95% genotyped variants, again with 
the TOPMed freeze 5 reference panel. The 5% masked 
genotyped variants were saved for imputation quality 
evaluation. Specifically, we calculated the squared Pear-
son correlation between imputed genotypes and true 
observed genotypes. For the 1956 variants on chromo-
some 1 tested, the mean squared Pearson correlation 
was 0.97, which suggests that most variants were well 
imputed even with a relatively small sample size (Fig. 
S1, Additional file  1), consistent with what has been 
reported in the literature [52–54].

Genome‑wide association analysis
We used EPACTS 3.3.0 [55] for single variant association 
testing. To account for relatedness among samples, we 
used the EMMAX (Efficient Mixed Model Association 
eXpedited) test [56], which is an efficient implementation 
of mixed model association accounting for sample struc-
ture including population structure and hidden related-
ness. Biallelic SNPs with MAF > 2% (did not account for 
relatedness) and Rsq > 0.8 were included in the analysis. 
In total, 8,535,130 variants were included in the asso-
ciation analysis. For the 528 samples who had genotype 
and covariates data available, we inferred kinship matrix 
using EPACTS and top 10 principal components (PCs) 
from the genotype data using PLINK. We performed the 
association test on the outcome LPAx, a binary outcome 
that classifies children into no or low cognitive impair-
ment and moderate-severe cognitive impairment groups. 
The covariates for the single variant association analysis 
included gestational age, maternal education, maternal 
race, sex of the infant, and top 10 PCs. We performed 
sensitivity analysis for variants showing suggestive sig-
nals by further adjusting interaction terms between 
covariates.

Results
Association analysis results
We conducted a GWAS on LPAx of 528 samples from 
the ELGAN2 cohort. We identified two genome-wide 
significant loci from the 8,535,130 variants tested: STX18 
and TEAD4, which are located on chromosome 4 and 
chromosome 12, respectively (Fig.  1). The index SNPs 
are rs79453226 (MAF = 0.036) and rs11829294 (MAF 
= 0.145) at the STX18 and TEAD4 loci, respectively. The 
genomic inflation factor λ, which measures the inflation 
in the test statistics and is calculated as the ratio of the 
median of the empirically observed distribution of the 
test statistics to the expected median (median of a chi-
square distribution with one degree of freedom), is 1.038, 
which suggests no significant inflation of test statistics or 
excess false positive rate (Fig. 2). Table 2 shows genome-
wide significant variants, and suggestive variants with p 
values less than 1e-6. For this set of suggestive variants, 
we performed additional association analysis by includ-
ing interaction terms between non-genetic covariates 
(gestational age, maternal education, maternal race, and 
sex of the infant). We evaluated each interaction term 
separately, and we found that the two genome-wide 
significant loci remained significant and most sugges-
tive loci had similar significance levels as in the original 
model (Fig. S2, Additional file 1), indicating that our top 
loci are robust to the further adjustment of interactions 
between covariates.

Figure  3 shows LocusZoom [59] plots for the two 
genome-wide significant loci, with linkage disequilib-
rium (LD) from TOP-LD [60], calculated using TOPMed 
European and African participants. We can see that in 
the European population, the lead variant rs11829294 
in the TEAD4 region has a number of LD tags (e.g., 21 
variants with r2 ≥ 0.8) and some of them had highly sig-
nificant p values; by contrast, the lead variant rs79453226 
in the STX18 region has fewer LD tags (2 variants with 
r2 ≥ 0.8) that showed suggestive association (Fig. 3a). In 
the African population, the lead variant rs11829294 in 
the TEAD4 region has only 2 LD tags, which did not have 
significant or suggestive association, and the lead variant 
rs79453226 in the STX18 region has no LD tag with r2 ≥ 
0.8 (Fig. 3b).

Epigenetic functional annotations
To further investigate the two loci identified for poten-
tial mechanisms, we examined several functional annota-
tion metrics, including the CADD phred score [61] and 
the fathmm MKL score [62]. CADD phred score meas-
ures the deleteriousness of variants and is computed as 
-10*log10(rank/total). A CADD phred score of ≥ 10 indi-
cates that the variant is predicted to be among the 10% 
most deleterious variants in the human genome, a score 
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of ≥ 20 indicates among the 1% most deleterious. The 
fathmm MKL score predicts the functional consequences 
of variants where values above 0.5 are generally consid-
ered deleterious, and values below 0.5 neutral or benign. 
We also looked at the Genehancer feature [63] and the 
genes predicted by Genehancer. Table 3 shows functional 
annotations for variants that passed the suggestive p 
value threshold (p value < 1e-6). We observed that vari-
ants rs9424366, rs79946490, rs58545250, and rs17031018 
were among the top 10% most deleterious in the human 
genome, and variant rs16913588 was predicted to be 
deleterious (with a fathmm MKL score of 0.97). Several 
variants were assigned by Genehancer as falling into 
enhancer regions with target genesTSPAN9, ITPR1, and 
CLIC4. These results provide evidence that some of the 
variants might have deleterious effects that are relevant 
to neurocognitive development in preterm children 
and suggest additional genes that might be functionally 
related.

Chromatin interactions
We examined chromatin conformation data for addi-
tional functional implications based on physical contacts 
from Hi-C and alike technologies. Figure 4 shows virtual 
4C plots generated by HUGIn2 [64] for the top two loci 
in adult cortex and fetal cortex Hi-C data [65]. HUGIn2 
is a web-based viewer of genome-wide chromatin con-
formation data to explore chromatin spatial organization 

across multiple human cell lines and primary tissues. 
HUGIn2 can additionally incorporate data from multi-
ple sources including genetic variants, chromatin organi-
zation features (e.g., topologically associating domains 
(TADs) [66], frequently interacting regions (FIREs) [67]), 
gene expression, and epigenetic annotations. For our pur-
pose, we examined ± 500 kb regions around each locus. 
Significant chromatin interactions between the putative 
regulatory regions (harboring some GWAS variant(s)) 
and promoters of genes suggest the likely causal or effec-
tor genes regulated by the GWAS variant(s). The results 
were consistent between adult cortex and fetal cortex. 
The variant rs79453226 at the STX18 locus was linked to 
the promoter regions of several genes, including STX18 
and NSG1 (Fig.  4a), and the variant rs12322215 at the 
TEAD4 locus was linked to FKBP4, FOXM1, RHNO1, 
TULP3, TSPAN9, and PRMT8 (Fig. 4b).

Overlapping with brain eQTL
Next, we investigated whether we could find any brain 
eQTL signals among the top variants. We examined all 
variants with LD r2 ≥ 0.6 with variants that passed the 
suggestive p value threshold (p value < 1e-6) using LD 
calculated from TOPMed European ancestry samples. 
Table  4 shows variants overlapped with commonMind 
eQTL [68] with FDR < 5%. Multiple brain eQTLs for 
PRMT8 on chromosome 12 in LD with the index SNP 
rs11829294 were identified.

Fig. 1 Manhattan plot. The Manhattan plot visualizes the association of SNPs along the genome with the LPAx trait. X-axis represents genomic 
location and y-axis represents -log10(p value). Each dot represents a SNP tested. SNPs above the red horizontal line, which marks the 5 ×  10−8 are 
considered genome-wide significant. This plot was generated using the R package karyoploteR [57]. NCBI build 38
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Overlapping with selective sweeps
We also examined whether the identified top variants 
overlapped with selective sweeps detected by S/HIC [69]. 
Table 5 shows multiple variants in LD (r2 ≥ 0.6) with the 
top variants overlapped with selective sweeps: all except 
one on chromosome 12 at the TEAD4 locus and one in 
an intergenic locus on chromosome 2. We found that 
some variants at the TEAD4 locus were located in soft 
sweep regions, where selection on standing variation 
produced qualitatively different skews in LD and allele 
frequencies.

Discussion
Cognitive impairment is highly prevalent among children 
born extremely preterm. Yet, limited evidence is available 
on the genetic factors that may contribute to this kind of 
impairment. In this study, we aimed to identify genetic 
factors that are associated with children’s cognitive func-
tion and understand related genetic mechanisms by uti-
lizing samples from the ELGAN cohort. Leveraging an 
LPA-derived phenotype and genetics data, we identified 

two genome-wide significant loci in our genome-wide 
association analysis for LPAx (a data-derived cognitive 
impairment outcome): TEAD4 (rs11829294, p value = 
2.40e-8) and STX18 (rs79453226, p value = 1.91e-8).

We utilized chromatin conformation data from multi-
ple human cell lines and primary tissues to see whether 
there are significant chromatin interactions between the 
two genome-wide significant loci and their neighboring 
regions. In adult cortex and fetal cortex, we found that 
variant rs12322215 (p value = 1.08e-07) in high LD with 
rs11829294 (r2 = 0.883) is linked to promoter regions of 
a few genes including TSPAN9 and PRMT8 (Fig. 4). Fur-
thermore, the association at the TEAD4 locus rs11829294 
and a few other variants that showed suggestive signifi-
cance at the same locus were assigned by Genehancer as 
falling into the enhancer region of TSPAN9 (Table 3). We 
also observed TSPAN9 is highly expressed in both adult 
cortex and fetal cortex but not in hippocampus, and we 
did not observe similar chromatin interactions in hip-
pocampus (Fig. 4). TSPAN9 is located at chr12:3,077,355-
3,286,564 (GRCh38/hg38) and is one of tetraspanins, a 

Fig. 2 QQ plot. A quantile-quantile (Q-Q) plot is used to characterize the extent to which the observed distribution of the test statistics follows the 
expected null distribution. This plot was generated using the R package qqman [58]
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superfamily of glycoproteins that function as “organizers” 
of cell membranes by recruiting other receptors and sign-
aling proteins into tetraspanin-enriched microdomains 
and induce normal platelet activation [70]. Those pro-
teins mediate signal transduction events that play a role 
in the regulation of cell development, activation, growth, 
and motility. TSPAN9 is highly expressed in normal brain 
tissues, including cerebellum and cerebellar hemisphere 
[71]. These pieces of evidence suggest the potential reg-
ulatory role of rs11829294 and its LD buddies on the 

TSPAN9 gene that could impact cognitive development 
among children born extremely preterm.

We also performed integrative analysis with brain 
eQTL to identify potential functional genes underly-
ing the genome-wide significant association. A few 
brain eQTL for PRMT8 were found to be in high LD 
with rs11829294 (Table 4). PRMT8 is a member of the 
protein arginine N-methyltransferase (PRMT) fam-
ily, which mediates protein arginine methylation, a 
common post-translational modification that has 

Table 2 Significant and suggestive association results for LPAx

Ordered by significance
a NCBI build 38

rsID Chra Positiona REF ALT P value MAF Locus Effect size (s.e.)

rs79453226 chr4 4483114 G C 1.91e-08 0.036 STX18 (intron) 0.421 (0.074)

rs11829294 chr12 3014153 C T 2.40e-08 0.145 TEAD4 (intron) − 0.231 (0.041)

rs10774094 chr12 3014630 C A 5.21e-08 0.160 TEAD4 (intron) − 0.214 (0.039)

rs12322215 chr12 3001421 G T 1.08e-07 0.142 TEAD4 (intron) − 0.215 (0.040)

rs10128796 chr12 3003552 G A 1.11e-07 0.142 TEAD4 (intron) − 0.214 (0.040)

rs73916918 chr19 376264 C T 1.17e-07 0.020 THEG (5’ UTR) 0.522 (0.097)

rs59359613 chr1 113154555 C T 1.83e-07 0.023 intergenic 0.465 (0.088)

rs16913588 chr9 28733517 T C 2.05e-07 0.036 intergenic 0.396 (0.075)

rs58545250 chr1 113172866 T C 2.14e-07 0.024 RP11-389O22.4 (downstream) 0.438 (0.083)

rs61114884 chr12 3004684 T A 2.39e-07 0.135 TEAD4 (intron) − 0.210 (0.040)

rs28411755 chr4 124309484 T C 3.40e-07 0.025 intergenic 0.431 (0.083)

rs7657348 chr4 124310584 A G 3.40e-07 0.025 intergenic 0.431 (0.083)

rs76946462 chr18 22326760 A G 3.96e-07 0.057 intergenic 0.278 (0.054)

rs77039990 chr18 22327483 G A 3.97e-07 0.057 intergenic 0.278 (0.054)

rs76500624 chr18 22326662 G A 3.97e-07 0.057 intergenic 0.278 (0.054)

rs75050632 chr18 22327123 G A 4.03e-07 0.057 intergenic 0.277 (0.054)

rs115606157 chr3 108839197 T G 4.53e-07 0.030 TRAT1 (intron) 0.385 (0.07)

rs73690518 chr8 65242418 C T 4.80e-07 0.048 intergenic 0.355 (0.070)

rs17031018 chr1 113100296 A G 5.27e-07 0.035 LRIG2 (intron) 0.377 (0.074)

rs61917974 chr12 3011978 T C 6.33e-07 0.109 TEAD4 (intron) − 0.223 (0.044)

rs12296242 chr12 3006641 G C 6.49e-07 0.133 TEAD4 (intron) − 0.202 (0.040)

rs143601180 chr3 4370781 A G 6.56e-07 0.032 SUMF1 (intron) 0.383 (0.076)

rs79946490 chr3 4385952 C T 6.64e-07 0.032 SUMF1 (intron) 0.383 (0.076)

rs17031120 chr1 113144809 T C 7.12e-07 0.021 intergenic 0.462 (0.092)

rs2163633 chr2 81884390 C A 7.36e-07 0.046 intergenic − 0.350 (0.070)

rs6716465 chr2 81871292 G C 7.43e-07 0.045 intergenic − 0.350 (0.070)

rs11062457 chr12 3010236 C T 7.44e-07 0.145 TEAD4 (intron) − 0.201 (0.040)

rs72921448 chr2 81824332 T C 7.44e-07 0.045 intergenic − 0.350 (0.070)

rs2286647 chr12 3010912 C T 7.46e-07 0.145 TEAD4 (intron) − 0.201 (0.040)

rs116629423 chr2 81858789 A G 7.47e-07 0.045 intergenic − 0.350 (0.070)

rs143923810 chr12 2988024 C T 7.73e-07 0.139 TEAD4 (intron) − 0.194 (0.039)

rs10493588 chr1 76227682 C T 8.04e-07 0.057 ST6GALNAC3 (intron) 0.279 (0.056)

rs17098434 chr1 76232427 G A 8.85e-07 0.057 ST6GALNAC3 (intron) 0.277 (0.056)

rs8025099 chr15 91488748 C A 9.06e-07 0.486 CRAT37 (intron) − 0.129 (0.026)

rs12318430 chr12 3006040 C A 9.75e-07 0.132 TEAD4 (intron) − 0.201 (0.040)

rs9424366 chr1 24475103 G C 9.86e-07 0.036 NIPAL3 (downstream) 0.349 (0.070)
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Fig. 3 Locus zoom plots for the two genome-wide significant loci. Colors represent linkage disequilibrium  r2 values calculated from TOPMed 
individuals with the lead SNP in each plot. a Locus zoom plots with linkage disequilibrium  r2 values calculated from TOPMed European ancestry 
individuals. b Locus zoom plots with linkage disequilibrium r2 values calculated from TOPMed African ancestry individuals. NCBI build 38

Table 3 Epigenetic functional annotations for selected genome-wide significant and suggestive associations

rsID P value CADD phred FathmmMKL Genehancer feature Genehancer 
connected gene

Locus

rs11829294 2.40e-08 3.728 0.21 enhancer TSPAN9 TEAD4 (intron)

rs10774094 5.21e-08 0.805 0.10 enhancer TSPAN9 TEAD4 (intron)

rs16913588 2.05e-07 7.525 0.97 – – intergenic

rs58545250 2.14e-07 9.661 0.49 – – RP11-389O22.4 (downstream)

rs61114884 2.39e-07 3.602 0.15 enhancer TSPAN9 TEAD4 (intron)

rs17031018 5.27e-07 9.16 0.30 – – LRIG2 (intron)

rs79946490 6.64e-07 10.19 0.23 enhancer ITPR1 SUMF1 (intron)

rs11062457 7.44e-07 0.362 0.13 enhancer TSPAN9 TEAD4 (intron)

rs2286647 7.46e-07 0.16 0.07 enhancer TSPAN9 TEAD4 (intron)

rs143923810 7.73e-07 1.518 0.04 enhancer TSPAN9 TEAD4 (intron)

rs9424366 9.86e-07 13.82 0.13 enhancer CLIC4 NIPAL3 (downstream)
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been implicated in signal transduction, RNA process-
ing, transcriptional regulation, and DNA repair [72]. 
PRMT8 was found to be associated with the plasma 
membrane and has a tissue-specific expression in brain. 
Specifically, it is highly expressed in nucleus accum-
bens (basal ganglia), putamen (basal ganglia), cortex, 
caudate (basal ganglia), frontal cortex (Brodmann area 
9), and anterior cingulate cortex (Brodmann area 24) 
[71]. It was also identified as a tissue-restricted enzyme 
responsible for proper asymmetric dimethylarginine 
(ADMA) level in postmitotic neurons where PRMT8-
dependent arginine methylation is required for neu-
roprotection against age-related increased of cellular 
stress [73]. Moreover, PRMT8 in human embryonic 
stem cells (hESCs) plays an important role not only 
in maintaining pluripotency but also in controlling 
mesodermal differentiation [74]. Along with the evi-
dence that variant rs12322215 is linked to the promoter 
region of PRMT8, we conclude that PRMT8 is another 
biologically plausible gene regulated by eQTL at the 
TEAD4 locus that could have potential effects on cog-
nitive impairment among preterm children.

Additionally, we found that multiple variants in LD 
with rs11829294 overlapped with selective sweeps 
detected by S/HIC (Table 5). There is evidence that soft 
sweeps are widespread and account for the vast major-
ity of recent human adaptation, and positive selection 
may often proceed via “soft sweeps” acting on mutations 
already present within a population. Furthermore, linked 
positive selection affects patterns of variation across 
much of the genome, and may increase the frequencies 
of deleterious mutations [69]. Therefore, these variants 
in soft sweep regions provide additional evidence for the 
associations found at the TEAD4 locus being biologically 
plausible and potentially causal.

For rs79453226, we found that it is linked to promoter 
regions of STX18 and NSG1 (Fig. 4). We did not find as 
much evidence for the STX18 locus supporting the sig-
nificant association as for the TEAD4 locus. By examin-
ing LD r2 values calculated from TOPMed, we observed 
that rs11829294 and rs79453226 have different LD struc-
tures at their loci (Fig.  3). Specifically, rs11829294 has 
a number of LD buddies with r2 ≥ 0.8 showing sugges-
tive association with LPAx in the European population. 

In contrast, rs79453226 has fewer LD buddies and is not 
in high LD with any of the suggestive variants. Therefore, 
rs11829294 is more likely to tag effects from causal vari-
ants than rs79453226.

With association results and other information con-
sidered, we did not have direct evidence indicating 
TEAD4 and STX18 as causal genes. However, there is 
evidence that TEAD4 and STX18 are related to pla-
cental development and brain respectively.TEAD4 is a 
member of the TEAD transcription factor family, which 
is best known for transcriptional output of the Hippo 
signaling pathway and has been implicated in processes 
such as development, cell growth and proliferation, tis-
sue homeostasis, and regeneration [75]. TEADs have 
been found to be evolutionarily conserved, and have 
been shown to play important roles in various biological 
processes and human disease [76, 77]. Mouse knockout 
studies showed that TEAD4 is specifically required for 
embryo implantation and trophectoderm lineage deter-
mination [78, 79], which play important roles in pla-
cental development. TEAD4 null mice are embryonic 
lethal due to failure in embryo implantation; however, 
disruption of TEAD4 after embryo implantation results 
in normal development [78, 79]. TEADs seem to have 
important biological functions, but studies thoroughly 
characterizing TEAD function and regulation are lack-
ing. In the future, we can utilize genome-wide DNA 
methylation, mRNA, and miRNA data from the pla-
centa to study this gene more closely. The gene STX18 
encodes a member of the syntaxin family of soluble 
N-ethylmaleimide-sensitive factor attachment protein 
receptors (SNAREs) which is part of a membrane teth-
ering complex that includes other SNAREs and sev-
eral peripheral membrane proteins, and is involved in 
vesicular transport between the endoplasmic reticulum 
(ER) and the Golgi complex [80]. It has also been shown 
that STX18 is important for the organization of two ER 
subdomains, smooth/rough ER membranes and ER exit 
sites by mediating the fusion of retrograde membrane 
carriers with the ER membrane [81]. Knockdown of 
STX18 caused a global change in ER membrane archi-
tecture, leading to the segregation of the smooth and 
rough ER. Moreover, the organization of ER exit sites 
was markedly changed concomitantly with dispersion of 

(See figure on next page.)
Fig. 4 Virtual 4C plots. Centered at a rs79453226 b rs12322215 in adult cortex and fetal cortex. The bin containing the anchor position is indicated 
as a thick grey vertical bar. Different genes or regions can be highlighted in yellow. On the top is gene expression data with gene locations. Each 
gene is indicated by an arrow pointing the direction of transcription. The start site is indicated by the tail of the arrow. Each gene is labeled by its 
common name and highlighted in red indicating the expression level: the deeper the red color the higher the expression. On the bottom is the 
chromatin interaction Hi-C data that is plotted as a virtual 4C plot with the given anchor position. The black line shows the observed counts, the red 
line shows the expected counts, and the blue line shows the -log10(p value). The range of the -log10(p value) is plotted on the y-axis on the right 
while the range of the count data is shown on the left. The x-axis is the genomic location in Mb. NCBI build 37



Page 10 of 14Liu et al. Journal of Neurodevelopmental Disorders           (2022) 14:16 

0.78 1.14
log10(expression+1)

0.06 1.13
log10(expression+1)

count
expected
-log10(p-value)
anchor

count
expected
-log10(p-value)
anchor

count
expected
-log10(p-value)
anchor

count
expected
-log10(p-value)
anchor

0.15 1.20
log10(expression+1)

0.77 1.14
log10(expression+1)

-lo
g1

0(
p-
va

lu
e)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

120

100

80

60

40

20

0

25

20

15

10

5

0

-lo
g1

0(
p-
va

lu
e)

8

7

6

5

4

3

2

1

0

-lo
g1

0(
p-
va

lu
e)

30

25

20

15

10

5

0

-lo
g1

0(
p-
va

lu
e)

50

40

30

20

10

0

35

30

25

20

15

10

5

0

70

60

50

40

30

20

10

0

R
ea

d
C
ou

nt
R
ea

d
C
ou

nt
R
ea

d
C
ou

nt
R
ea

d
C
ou

nt

4.2 4.74.3 4.4 4.5 4.6 Mb

4.2 4.74.3 4.4 4.5 4.6 Mb

3.83 3.2 3.4 3.6 Mb

3.83 3.2 3.4 3.6 Mb

Adult cortex rs79453226

Fetal cortex rs79453226

aa

bb Adult cortex rs12322215

Fetal cortex rs12322215

Fig. 4 (See legend on previous page.)



Page 11 of 14Liu et al. Journal of Neurodevelopmental Disorders           (2022) 14:16  

the ER-Golgi intermediate compartment and the Golgi 
complex. Variants in STX18 were previously found to be 
associated with brain volume measurement and neuro-
imaging measurement [82, 83].

One limitation of our analysis is that our results may 
not be generalizable to children who are not extreme 
premature. Another issue is the small sample size, 
although we were able to impute most variants well 
(Fig.  S1, Additional file), it limits the statistical power 
of the association analysis. The few genome-wide sig-
nificant single variant associations we found, and the 
non-statistically significant heritability estimate also 
suggest the need for better powered analyses (Additional 
file  1). It is also possible that variants included in our 
analyses are in low or moderate LD with true causal vari-
ants which are rare and cannot be well-imputed in the 
ELGAN2 cohort. While ELGAN2 is the largest cohort 
with genotype and long-term cognitive assessment for 
extremely preterm children currently available in the 
USA, in the future we hope to study a larger population 
with longitudinal data of cognitive function, to investi-
gate whether there are genetic variants that interact with 
perinatal and neonatal immune factors to increase risk 
for development of trajectories of impaired cognitive 
function.

Conclusions
In this work, we present an innovative computational 
approach that combines LPA with multi-faceted genomic 
analysis to investigate potential genetic risk factors 
underlying cognitive impairment among children born 
extremely preterm. Our association analysis identified 
two genome-wide significant loci: TEAD4 at rs11829294 
and STX18 at rs79453226. Further genomic analysis sug-
gests that rs11829294 and its LD buddies have potential 
regulatory roles on likely functionally relevant genes 
TSPAN9 and PMRT8. This study provides new mechanis-
tic insight into neurocognitive function among children 
born extremely preterm by performing an imputation-
based GWAS with subsequent prioritization of causal 
variants and effector genes.
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Table 4 Variants overlapped with commonMind eQTL

a NCBI build 38

rsID Gene Chra Positiona FDR Index SNP LD  r2 with 
the index 
SNP

rs143923810 PRMT8 chr12 2988024 0.010 rs11829294 0.724

rs7302783 PRMT8 chr12 2989245 0.010 rs11829294 0.724

rs7302789 PRMT8 chr12 2989254 0.010 rs11829294 0.720

rs10082968 PRMT8 chr12 2990125 0.025 rs11829294 0.720

rs12322215 PRMT8 chr12 3001421 0.048 rs11829294 0.883

rs10128796 PRMT8 chr12 3003552 0.045 rs11829294 0.883

Table 5 Variants overlapped with selective sweeps

Population: CEU (UT, USA), GWD (Western Divisions, the Gambia), LWK (Webuye, Kenya), PEL (Lima, Peru), YRI (Ibadan, Nigeria). Start and end are start and end 
positions of selective sweep regions
a NCBI build 37

Chra Positiona Start End Selective sweeps

chr12 3095812 2800000 3100000 CEU: soft, GWD: soft, LWK: soft, PEL: soft, YRI: soft

chr12 3097190 2800000 3100000 CEU: soft, GWD: soft, LWK: soft, PEL: soft, YRI: soft

chr12 3098411 2800000 3100000 CEU: soft, GWD: soft, LWK: soft, PEL: soft, YRI: soft

chr12 3098420 2800000 3100000 CEU: soft, GWD: soft, LWK: soft, PEL: soft, YRI: soft

chr12 3099291 2800000 3100000 CEU: soft, GWD: soft, LWK: soft, PEL: soft, YRI: soft

chr2 82111514 82100000 82200000 GWD: soft, YRI: soft
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sensitive factor attachment protein receptors; ER: Endoplasmic reticulum.
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